• Title/Summary/Keyword: 태양 일사

Search Result 464, Processing Time 0.029 seconds

Comparative analysis of the global solar horizontal irradiation in typical meteorological data (표준기상데이터의 일사량 데이터 비교 분석)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.102-109
    • /
    • 2009
  • The research on meteorological data in Korea has been carried out but without much consistency and has been limited to some areas only. Of relatively more importance has been the area in the utilization of the solar energy, however, the measurement of the global solar horizontal irradiation has been quite limited. In the current study, the actually measured value of the global solar horizontal irradiation from the meteorological data and the theoretically calculated value of the global solar horizontal irradiation from the cloud amount will be analyzed comparatively. The method of analysis will employ the standard meteorological data drafted by the Korean Solar Energy Society, the standard meteorological data from the presently used simulation program and the corresponding results have been compared with the calculated value of the global solar horizontal irradiation from the cloud amount. The results of comparing the values obtained from MBE(Mean Bias Error), RMSE(Root Mean Squares for Error), t-Statistic methods and those from each of the standard meteorological data show that the actually measured value of the meteorological data which have been converted into standard meteorological data with the help of the ISO TRY method give the monthly average value of the global solar horizontal irradiation. These values compared with the monthly average value from the IWEC from the Department of Energy of the USA show that the value of the global solar horizontal irradiation in the USA is quite similar. In the case of the values obtained from calculation from the cloud amount, the weather data provided by TRNSYS, except only slight difference, which means that the actually measured values of the global solar horizontal irradiation are significant. This goes to show that in the case of Korea, the value of the global solar horizontal irradiation provided by the Korea Meteorological Administration is will be deemed correct.

An Experimental Study on the Scale Correction of Measured Horizontal Global Solar Radiation (수평면 전일사량 측정데이터 보정에 관한 실험적 연구)

  • Song, Su-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.25-31
    • /
    • 2010
  • A Precision Spectral Pyranometer (PSP) is mainly used as a reference to calibrate other pyranometers due to its high accuracy and sensitivity in response to the spectrum wavelength range of 0.285 ${\mu}$ to 2.8 ${\mu}$, while the sensitivity of photovoltaic-type Li-Cor pyranometer is limited within a certain spectral range from 0.4 ${\mu}$ to 1.1 ${\mu}$. In this study, two Eppley PSPs($PSP_1$ and $PSP_2$) were first compared to the calibrated Eppley PSPs from National Renewable Energy Laboratory (NREL), resulting in two linear correction factors based on the comparison between the logger output (V) from the test PSP and the solar radiation (W/m2) from the NREL PSP. The Li-Cor pyranometer used in this study was then corrected based on the comparison of measured solar radiation ($W/m^2$) from the corrected $PSP_1$ and the Li-Cor pyranometer. In addition, instrument scale corrections were also performed for the PSPs and the Li-Cor from the transmitter to the data logger. From the comparisons, a linear correction factor (1.0214) with R=0.9998 was developed for the scale correction between$PSP_1$ and $PSP_2$, while the Li-Cor pyranometer has a scale(1.0597) and offset (32.046) with R=0.9998 against$PSP_1$. As a result, it was identified that there were good agreements within ${\pm}$ 10 W/ $m^2$ between Eppley $PSP_1$ vs. $PSP_2$ solar radiation and within ${\pm}$ 20 W/$m^2$ between$PSP_1$ vs Li-Cor solar radiation after the empirical scale corrections developed in this study.

Comparing Solar Heat Shading Performances of Internal Blinds in the Summer (내측 블라인드의 하절기 일사열 차폐 성능 비교)

  • Park, Eun-Mi;Choi, Dong-Ho;Park, Min-Yong;Lee, Kyung-Hee
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.75-83
    • /
    • 2014
  • Heat loss through windows and doors occupies 20 to 45% of the total heat loss in building. It accounts for a large proportion of the total heat loss in building. In order to suppress the amount of heat flow through the windows and doors were considered actions such as reinforcement of insulation performance of window, adoption of low-e glass, and installation of solar heat shading device. The Purpose of this study is to compare solar heat shading performances of 3 types of internal blinds in the summer. In order to verify the solar heat shading performances of the blinds, a roll blind, blind A(Venetian blind) and blind B(Daylight guiding venetian blind)were installed in the four rooms with the same environmental conditions. As a result of the experiment, the blind B, blind A, roll blind showed an excellent performance in that order. Its because the blind B is made of aluminum materials coated with special paints on surface. It doesn't converted to long wave by short wave light. and it is reflected to short wave to outside.

An Evaluation of Uncertainty for Reference Standards Solar Radiation Data (참조표준 일사량 데이터에 대한 불확도 평가)

  • Kim, Sang-Yeob;Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • The energy makes the basic element which improves the quality of life with motive power of industry and life. However, using the fossil fuel resources was restricted through it's abuse and exhaustion, and that cause a global warming resultingly. According to the reason, the world increased the interest that are stability and use of new and renewable energy which is clean energy with environment. Therefore, the property data of new and renewable is needed for developing and supplying the energy. In other words, the data of new and renewable energy becomes the standards for supply and evaluation of new and renewable energy with development of industry and technology. Also, the necessity came to the fore as the reference and standards of new and renewable energy data. Therefore, in this study, we evaluate and collect the solar radiation data as the new and renewable data and process the collected data through the standards for valuation. We evaluate uncertainty with standards which are NREL, WMO, and GUM. Whereby the data becomes reference standards data and gains the credibility. For the reliability data, we correct the measuring instrument with correction period. Using the DQMS and SERI QC, we efficiently manage and evaluate the solar radiation data. As a result, we evaluate uncertainty as 1,120 case about 16 area. we achieve credibility of data from evaluated solar radiation data and provide an accurate information to user. The annual average of horizontal radiation presents between 1,484 and 4,577, then the uncertainty evaluates from 163 to 453. The error of uncertainty presents smaller than the measurement values. So, we judge a credibility of data by expression of reliability quantitatively. In additional, the reference standards data which is possible to approach anywhere will be used for the supporting related industry and policy making.

Evaluation of UM-LDAPS Prediction Model for Solar Irradiance by using Ground Observation at Fine Temporal Resolution (고해상도 일사량 관측 자료를 이용한 UM-LDAPS 예보 모형 성능평가)

  • Kim, Chang Ki;Kim, Hyun-Goo;Kang, Yong-Heack;Kim, Jin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.13-22
    • /
    • 2020
  • Day ahead forecast is necessary for the electricity market to stabilize the electricity penetration. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for longer than 12 hours forecast horizon. Korea Meteorological Administration operates the UM-LDAPS model to produce the 36 hours forecast of hourly total irradiance 4 times a day. This study interpolates the hourly total irradiance into 15 minute instantaneous irradiance and then compare them with observed solar irradiance at four ground stations at 1 minute resolution. Numerical weather prediction model employed here was produced at 00 UTC or 18 UTC from January to December, 2018. To compare the statistical model for the forecast horizon less than 3 hours, smart persistent model is used as a reference model. Relative root mean square error of 15 minute instantaneous irradiance are averaged over all ground stations as being 18.4% and 19.6% initialized at 18 and 00 UTC, respectively. Numerical weather prediction is better than smart persistent model at 1 hour after simulation began.

Development of VPO MPPT of PV System Considering Shadow Influence (그림자 영향을 고려한 PV 시스템의 VPO MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.521-531
    • /
    • 2011
  • This paper presents the variable perturbation and observation(VPO) maximum power point tracking(MPPT) control of the photovoltaic(PV) system considering the shadow influence. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. MPPT control is a very important technique in order to increase an output and efficiency of the solar power generation. Conventional perturbation and observation(PO) and incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, this paper proposes the VPO MPPT algorithm which changes step size according to output variation. The response characteristics of VPO MPPT algorithm proposed in this paper compares with response characteristics of conventional MPPT algorithm about the radiation, temperature and shadow influence. The validity of the algorithm proposed in this paper prove through the results of the comparisons.

A Study on the Optimization of Color Module BIPV Architectural Design Using BIM - Based on the data of Seoul surveyed solar radiation - (BIM을 활용한 컬러모듈 BIPV 건축 설계 최적화 방안 연구 - 서울 지역 실증 일사량 데이터 중심으로 -)

  • Jeon, Hyun-Woo;Yoon, Hea-Kyung;Park, Suh-Jun
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.19-29
    • /
    • 2019
  • Currently, BIPV (Building Integrated Photovoltaic) design technology lacks analysis function at the planning stage, and there is a lack of understanding and reliability of BIPV design method and system for building designers. To design and consider various building integrated solar design alternatives, the color of building integrated solar is often monotonous or does not match the design direction of the building. In this study, architectural designers can select various color modules in the planning and design process of the building and analyze the characteristics of color module solar cells and compare and analyze the actual solar radiation and predicted solar radiation in Republic ofKorea Seoul to reduce the confusion of design methods. By building a BIM design integrated system that can prove the quality of the building and analyze the shading analysis and power generation performance architecturally, it can improve the reliability of color module solar cell applicability that can express aesthetics in buildings and the predicted solar power generation capacity of each region. In the initial design stage, based on the empirical data of the BIPV system, it is possible to analyze the power generation performance for each installation angle and installation direction by analyzing the surrounding environment and the installation area, and accurately determine the appropriateness of the design accordingly.

Generation of monthly averaged horizontal Radiation based on a regional clearness estimating model (우리나라 지역별 청명도 예측 모델을 이용한 월평균 수평면 일사량 산출)

  • Kim, Jin-Hyo;Kim, Min-Hwi;Kwon, Oh-Hyun;Seok, Yoon-Jin;Jeong, Jae-Weon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.72-80
    • /
    • 2010
  • The main thrust of this paper is to investigate a practical way of generating the monthly averaged daily horizontal solar radiation in Korea. For estimating the horizontal solar radiation, the clearness index($K_T$) and the clearness number($C_N$) which are required for the use of Liu and Jordan's model and ASHRAE Clear Sky model were derived based on the measured weather data. Third-order polynomials returning $K_T$ and��$C_N$ for a given location were derived as a function of cloud amount, month, date, latitude and longitude. The predicted monthly averaged daily horizontal solar radiation values were compared with those acquired from the established design weather data. The MBE(Mean Bias Error) and RMSE (Root Mean Squares for Error) between the predicted values and the measured data were near zero. It means that the suggested third-order polynomials for $K_T$ and $C_N$ have good applicability to Liu and Jordan's model and ASHRAE Clear Sky model.

The Study on the Optimal Angle of the Solar Panel using by Solar Radiation Model (태양복사모델을 이용한 태양전지판의 최적 경사각에 대한 연구)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.64-73
    • /
    • 2012
  • The angle of solar panels is calculated using solar radiation model for the efficient solar power generation. In ideal state, the time of maximum solar radiation is represented from 12:08 to 12:40 during a year at Gangneung and it save rage time is12:23. The maximum solar radiation is 1012$W/m^2$ and 708$W/m^2$ inc lear sky and cloudy sky, respectively. Solar radiation is more sensitive to North-South (N-S) slope angle than East-West (E-W) azimuth angle. Daily solar radiation on optimum angle of solar panel is higher than that on horizontal surface except for 90 days during summer. In order to apply to the real atmosphere, the TMY (typical meteorological Year) data which obtained from the 22 solar sites operated by KMA(Korea Meteorological Administration) during 11 years(2000 to 2010) is used as the input data of solar radiation model. The distribution of calculated solar radiation is similar to the observation, except in Andong, where it is overestimated, and in Mokpo and Heuksando, where it is underestimated. Statistical analysis is performed on calculated and observed monthly solar radiation on horizontal surface, and the calculation is overestimated from the observation. Correlationis 0.95 and RMSE (Root Mean Square Error) is10.81 MJ. The result shows that optimum N-S slope angles of solar panel are about $2^{\circ}$ lower than station latitude, but E-W slope angles are lower than ${\pm}1^{\circ}$. There are three types of solar panels: horizontal, fixed with optimum slope angle, and panels with tracker system. The energy efficiencies are on average 20% higher on fixed solar panel and 60% higher on tracker solar panel than compared to the horizontal solar panel, respectively.

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.