일반적으로 위성의 태양전지판은 태양을 지향하도록 제작되기 때문에 지구 알베도에 의한 생산전력은 거의 없고, 이에 전력 분석에서도 보통 무시된다. 그러나 큐브위성은 태양전지판이 전개되지 않는 형태로 몸체에 고정되어 부착되는 경우가 많다. 이 경우, 태양전지판은 직육면체의 6면에 붙어 각각 다른 방향으로 향하기 때문에 지구 알베도에 의한 전력 생산은 무시할 수 없는 양이 될 수 있다. 본 논문에서는 지구 알베도에 의한 위성의 생산 전력을 계산하였다. 알베도 에너지를 계산하기 위해 극좌표계를 기반으로 지구표면을 격자로 나누었고, 이 격자에서의 반사에 의해 태양전지 셀에서 생산되는 전력에너지를 모델링하였다. 고도 500 km, 태양동기궤도에서 비행하는 1 U 크기의 큐브위성을 시뮬레이션하였고, 지구 알베도에 의해 생산되는 전력량을 계산하였다.
페로브스카이트 태양전지는 용액공정으로 제작되어 공정 중 전구체 조성제어를 통해 밴드갭을 용이하게 조절할 수 있다. 탠덤 태양전지의 상부셀로 활용하여 실리콘 태양전지와 접합 시 30% 이상의 효율 달성이 가능하지만, 페로브스카이트 태양전지의 낮은 안정성이 상용화의 걸림돌로 작용하고 있다. 아이오딘 이온 및 전극 물질 확산이 주된 열화기구로 알려져 있어 장기 안정성을 확보하기 위해서는 이러한 이온 이동의 방지가 필요하다. 본 연구에서는 층간소재와 페로브스카이트 광활성층 사이의 이온이동에 의한 열화현상을 관찰하고, 이를 억제하기 위해 페로브스카이트 소재와 은전극 사이에 버퍼층을 도입하여 소자의 안정성을 확보하였다. 85℃에서 300시간 이상 보관 시 버퍼가 없는 소자는 페로브스카이트 층이 PbI2 및 델타상으로 변화하며 변색되었으며 AgI가 형성되는 것을 확인했다. LiF와 SnO2 버퍼 도입 시 이온이동 억제 효과를 통해 페로브스카이트 태양전지의 열안정성이 향상되었다. LiF버퍼층 적용 및 봉지를 한 소자는 85℃-85%RH damp heat 시험 200시간 후 효율감소가 발생하지 않았으며 추가로 AM 1.5G-1SUN 하에서 최대출력점을 추적하였을 때 200시간 후 초기 효율의 90% 이상 유지하는 것을 확인했다. 이 결과는 버퍼층 형성을 통한 층간 물질이동 억제가 장기안정성을 확보하기 위한 필요조건임을 보여준다.
태양광 모듈에서 태양전지를 연결해주는 인터커넥터로 리본 솔더로 SnPbAg가 사용되고, 옥외 태양광 발전에 장기간 노출시 리본의 부식으로 인한 열화가 흔히 관찰된다. 이러한 부식현상으로 인하여 리본과 태양전지의 접합이 약해져 접촉저항이 증가하고, 또한 리본 자체의 직렬 저항이 증가하게 되어 태양전지의 전압 전류 곡선에서 충진률 손실로 출력이 저하된다. 본 논문에서는 리본의 부식을 완화시킬 수 있는 방법으로 희생양극법을 이용하여 순수 알루미늄 및 아연, 알루미늄, 아연 그리고 마그네슘의 합금을 이용한 5가지 희생양극 소재의 부식에 의한 열화 저감을 연구하였다. 전기화학적 방법으로 희생양극 소재의 개방회로 전위와 폐쇄회로 전위를 측정하였고, 포텐시오다이나믹 분극 곡선을 측정하고, 영저항전류계를 이용하여 리본과 소재간의 갈바닉 전류를 측정하였다. 또한, 아세트산과, NaCl에 리본과 희생양극 소재의 부착 전후의 침지시험과 4셀 미니모듈로 제작한 후 1500시간 고온고습 시험 전후 출력을 평가하였다. 그 결과 Al-3Mg와 Al-3Zn-1Mg의 희생양극 소재가 부식속도가 느리고, 출력저하를 저감시킬 뿐만 아니라 장기 안정성에도 효과적인 것으로 평가된다.
본 논문에서는 HAUSAT-2 전력계의 설계와 각 모드별로 에너지 평형 해석을 통한 전력계 설계의 타당성을 검증하였다. 태양전지판은 GaAs 셀을 사용하였고 디지털 방식의 최대 전력 추적기를 채택하였다. 배터리 팩은 4개의 Li-Ion 셀로 구성하였고 최대 전력 추적기와 배터리 충전 조절기로 배터리 충전 기능을 구현하였다. 전력 제어기는 DC-DC 변환기로 요구되는 전압을 출력하고 상용 IC 및 MOSFET으로 이루어진 전력 분배기가 서브시스템 및 탑재체에 전력을 분배시킨다. 전력생성 분석은 다양한 승교점 지방시(LTAN)를 가지는 궤도를 고려하여 수행하였으며, 이 중 HAUSAT-2의 임무 수행에 적합한 궤도를 선정하여 모드별 전력 사항을 반영하여 에너지 평형 해석(EBA)을 진행하였다.
본 연구에서는 co-sputtering을 통한 $WO_3$와 $In_2O_3$ 타겟을 사용하여 $WO_3$ 파워에 따른 Tungsten(W)-doped $In_2O_3$ (IWO) 투명 전극의 전기적, 광학적, 구조적 특성을 연구하고 이를 활용한 유기태양전지(Organic Photovoltaics; OPVs)의 특성을 분석하였다. Tungsten의 doping 농도는 $WO_3$에 인가되는 Radio-frequency (RF) power를 5~30 W 까지 변화시켜 조절하였으며, Rapid Thermal Annealing (RTA) 후 열처리 공정을 통해 IWO 박막의 전기적, 광학적, 구조적 특성을 분석하였다. Hall measurement 및 UV/Vis spectrometry 분석을 통하여 가시광선 영역에서 80% 이상의 높은 투과율, $48\;cm^2\;V^{-1}\;s^{-1}$의 홀 이동도, 20 ${\Omega}/{\Box}$ 이하의 낮은 면저항과 $3.2{\times}10^{-4}\;{\Omega}-cm$의 비저항 값을 나타내었다. 최적화된 IWO 박막을 이용한 OPV 셀 특성은 fill factor(FF): 61.59 %, short circuit current($J_{SC}$): 8.84 $mA/cm^2$, open circuit voltage($V_{OC}$): 0.60 V, efficiency(PCE): 3.27 %로 ITO로 제작된 OPV 샘플과 비교하였을 때 ITO를 대체할 수 있는 고이동도의 새로운 투명 전극 재료로서의 가능성을 확인하였다.
염료감응형 태양전지에서 가능한 광전자의 이동경로에 대해 살펴보면 빛 에너지를 흡수한 루테늄계 염료는 기저상태에서 여기상태로 전이한 후 광전자의 반도체 전도띠로 전자주입이 이루어진다. 이러한 전자 중 일부는 반도체산화물의 트랩으로의 전이와 트랩에서 염료 기저상태로의 전이가 일어나고 일부 전자는 전해질의 이온종 또는 산화된 염료와 재결합하는 현상이 일어난다. 본 연구에서는 이러한 전자의 재결합을 막고자 p형 반도체인 NiO paste를 제작하여 $TiO_2$ 광전극 층 위에 코팅하였다. 코팅된 NiO 층은 홀수용체로서 염료에 전자를 제공해 주는 역할과 동시에 $TiO_2$ 가전도대로 이동되었던 전자들이 염료의 기저상태의 홀이나 전해질로의 전자 유입이 이루어지는 전자의 재결합을 막는 방벽의 역할을 동시에 하게 된다. 제작된 염료감응형 태양전지 셀의 에너지 변환효율 특성을 알아보기 위하여 1000 W Xe Arc Lamp와 Air Mass 1.5, filter가 장착된 Thermo-Preal (USA) Solar simulator system을 사용하여 개방전압 (Voc), 광전류 (Isc), fill factor (FF), 에너지변환 효율 (${\eta}$)을 조사하였으며 광학현미경을 통해 염료의 흡착 정도를 비교해 보았다. NiO의 코팅 두께나 NiO 나노입자 크기에 따라 염료감응형태양전지에서 에너지변환효율에 미치는 영향을 조사하였다. NiO가 코팅되지 않은 $TiO_2$ 광전극과 비교해 볼 때 NiO 코팅시 Voc와 Isc의 증가로 인해 에너지변환효율이 20% 이상 향상되는 것을 볼 수 있었다.
전기로를 이용하여 셀렌화한 $CuInSe_2$ (CIS)박막에 대해 연구한 결과를 발표하고자 한다. 화석연료의 과도한 사용으로 지구온난화의 환경문제가 대두되면서 영구적이고 무상의 태양에너지 이용에 대한 필요성이 점차 높아지고 있다. 빛에너지를 전기에너지로 변화시키기 위한 태양전지는 재료에 따라 다양하게 개발되고 있으며 그 중 가장 주목을 받고 있는 것 중의 하나가 $CuInSe_2$을 흡수층으로 하는 CIS 박막 태양전지이다. CIS 박막은 태양전지의 흡수층으로 사용되는데 직접천이형 밴드구조를 가지고 있고, 약 $10^5\;cm^{-1}$의 높은 광흡수계수를 가지고 있어 태양전지의 흡수층으로 적합한 물질로 각광받고 있다. 에너지 밴드갭이 1eV로 실리콘과 유사한 밴드갬을 가지고 있으나 이는 Ga, Al을 In 대신 치환함으로 조절할 할 수 있다. 무엇보다도 유리와 같은 저가의 기판위에 스퍼터와 같은 장치로 대면적 CIS 태양전지를 만들수 있다는 것이 산업적인면에서의 장점으로 알려져 있다. 본 연구에서는 $50mm{\times}50mm$ 넓이의 sodalime 유리판을 기판으로 하여 CIS 박막을 제조하고 연구하였다. 스퍼터를 이용하여 유리기판 위에 Mo (Molybdenum) 을 증착하고 그 위에 Cu-In막을 증착하였다. Cu-In/Mo/유리기판 시료는 전기로에 도입되어 셀렌화 처리 하였다. 전기로는 $10^{-1}$ Torr 정도의 진공을 수분간 유지하여 반응할 수 있는 공기(산소)를 제거하였다. 진공 혹은 5N의 고순도 질소를 흘려주며 열을 가하여 셀렌화를 하였다. 전기로에는 1g의 셀레늄(Se)이 Cu-In/Mo/유리기판 시료와 함께 도입되었다. Se이 Cu-In 막과 높은 반응성을 갖도록 Se과 Cu-In 시료는 그라파이드 상자에 함께 넣었고, 그라파이트 상자는 전기로에 넣어 셀렌화하였다. 셀렌화 온도는 $400^{\circ}C{\sim}500^{\circ}C$까지 변화시켜 가며 CIS 박막을 제조하였으며 그 물성도 조사하였다. 물성 조사는 사진, 현미경, SEM, EDX, XRD, Hall effects를 이용하였다. 셀렌화 온도가 $450^{\circ}C$ 이상에서는 CIS 박막의 흡착성이 낮아 CIS 박막이 Mo 표면에서 떨어짐을 알 수 있었다. 셀렌화 후 박막에 함유된 Se은 48%~49% 정도있었다. 제조된 CIS 박막시료를 SEM으로 확인한 결과 생성된 CIS/Mo 사이에 계면층이 생겼있음 알 수 있었다. 이러한 계면층은 $MoSe^2$층으로 사료되고, 셀렌화 온도가 높으면 계면층의 두께도 증가되는 경향을 보였다. 셀렌화 온도가 높아질수록 많은 양의 산소가 CIS 박막에 들어가는 것도 알 수 있었다. 학술회의에서 보다 깊은 조사결과를 발표하고자 한다.
When photovoltaic module is used for a long time, its performance decreases due to several reasons. In this paper, we focus on the possibilities mainly contributing to the degraded efficiency of the polycrystalline silicon photovoltaic modules. The analysis is based on the modules that have been used for 15 years. These are two main reasons that cause the efficiency degradation, the corrosion and thermal decomposition. The former phenomenon of electrode is mainly due to the moisture from damaged back sheet in some module. However the other reason of the degraded efficiency comes from the thermal decomposition, which can not be observed from the outside but only by experiment. In this study, the comparison between the efficiency of normal modules and degradation modules is presented. Module having degraded cell was seen to cause increase of series resistance by about 80%, in comparison to normal samples efficiency which reduce by about 20%. This study shows that the effects of series resistances on module performance are critical. These effects must be understood and taken into consideration when analyzing performance degradation.
$Cu(In,Ga)Se_2$ (CIGS) 휨성 태양전지의 셀을 보호하기 위하여 스프레이 코팅방법에 의해 수분과 공기로부터의 보호막을 형성하고 그 전기적, 광학적 특성을 평가하였다. 일반적으로 CIGS 휨성 태양전지의 소자층을 보호하기 위해서 EVA(ethylene-vinyl acetate) 필름을 라미네이션 장비를 통하여 여러 겹 보호막을 형성함으로써 복잡한 공정으로 인해 원가상승의 요인으로서 작용한다. 본 연구는 휨성 CIGS 태양전지의 보호막을 라미네이션 박막공정 대신에 간단한 스프레이 코팅공정을 통한 패시베이션(passivation) 박막층을 형성함으로써 CIGS 태양전지 무게의 경량화와 공정시간 단축 연구를 진행하였다. 패시베이션 박막층으로는 PVA(polyvinyl alcohol), SA(sodium alginate) 물질에 $Al_2O_3$ 나노 입자를 첨가하여 유 무기 복합 용액을 사용하였다. 스프레이 코팅된 소자에 비해 에너지 변환 효율특성 62.891 gm/[$m^2-day$]의 비교적 양호한 습기 차단 특성을 나타내었다.
스크린 프린팅법을 이용한 태양전지의 전극은 주로 고가의 은을 사용하기에 태양전지의 저가화에 한계를 가지고 있다. 고효율 결정질 실리콘 태양전지의 원가절감의 문제 해결방안으로 박형 웨이퍼 연구개발이 많은 관심을 받고 있다. 본 연구에서는 은 전극을 대체 할 수 있는 니켈/구리 전극을 사용하였고, 박형 웨이퍼에서도 전극 공정이 가능한 도금법을 사용하여 전극을 형성 하였다. 니켈 전극형성은 광유도 도금법(Light-Induced Plating), 구리 전극형성은 광유도전해도금법(Light-Induced Electro Plating)을 이용하여 실험을 진행 하였다. 니켈 광유도 도금 공정시 공정시간 3 ~ 9분까지 가변하였다. 니켈실리사이드 형성 위해 열처리 공정을 $300{\sim}450^{\circ}C$까지 가변하였고 유지시간 30초 ~ 3분까지 가변하여 실험을 진행하였다. 니켈 도금 수용액의 pH 6 ~ 7.5까지 가변하여 실험하였다. 구리 광유도 전해도금 공정 전류밀도를 $1.6mA/cm^2{\sim}6.4mA/cm^2$까지 가변하여 실험을 진행 후, 전류밀도 $3.2mA/cm^2$로 시간 5 ~ 7분까지 가변하여 실험 하였다. 니켈 도금 공정 시간 5분, 니켈실리사이드 형성 열처리 온도 $350^{\circ}C$, 유지시간 1분에서 DIV(Dark I-V) 분석결과 가장 적은 누설전류를 확인하였다. 니켈 도금액 pH 6.5에서 니켈입자 및 구리입자의 균일성이 좋은 최적의 조건임을 확인하였다. 구리 도금 공정 전류밀도 $3.2mA/cm^2$, 시간 5분에서 TLM(Transmission Line Method) 측정결과 접촉 저항 $0.39{\Omega}$과 접촉 비저항 $12.3{\mu}{\Omega}{\cdot}cm^2$의 저항을 확인하였다. 도금법을 이용하여 전극을 형성함으로써 접촉저항 및 접촉 비저항이 낮고 전극 품질이 향상됨으로서 셀의 전류밀도 $42.49mA/cm^2$를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.