• Title/Summary/Keyword: 태양열 의존율

Search Result 21, Processing Time 0.033 seconds

Demonstration project on utilization of solar thermal energy on Hybrid Cooling and Heating system (태양열 이용 Hybrid냉난방시스템 실증연구)

  • Mun, Jong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.363-372
    • /
    • 2005
  • 최근 고유가상황 및 에너지소비가 증대되는 사회적 분위기와 환경적 변화에 힘입어 대체에너지기술개발에 대한 절실한 대책마련이 중요시 되고있다. 기후변화협약의 발효로 환경에너지에 대한 새로운 인식의 필요로 에너지체제의 변환이 촉구되어지고 있으며 이에 따른 환경친화적 에너지자원을 이용한 신 재생에너지개발에 대한 연구개발기술이 관심을 받고 있다. 현재 사용중인 화석연료는 환경오염 및 지구의 온난화 현상 등 심각한 공해문제를 야기시키고 있는 반면에 태양에너지와 같은 청정에너지의 개발은 환경오염방지와 친환경에너지자원의 활용이라는 점에서 관심이 대상이 되고 있고 특히, 우리나라의 경우 에너지수입 의존율이 97%로 높은 상황에서 국가에너지대책을 수립하고 해외수입에너지 의존율을 최소화시키기 위하여 가히 필수적인 상황이다. 따라서, 본 실증연구사업(태양열 이용 Hybrid냉난방시스템 실증연구)은 태양열 집열기에서 생산된 저온의 $20\sim30^{\circ}C$의 승온된 양질의 열원을 히트펌프 증발기 열원으로 이용 히트펌프의 압축동력이 상대적으로 작아져 기존 히트펌프 시스템에서의 성적계수(COP)를 높여 주는 효과를 기대할 수 있고, 특히 하절기 복사량이 많은 시기에는 $50\sim60^{\circ}C$ 정도로 승온되어진 중 고온수를 직접 온수탱크로 이동시켜 필요수요처에 공급함으로써 이에 따른 에너지절감효과를 기대할 수 있다. 구축된 태양열 이용 하이브리드(Hybrid)냉난방시스템은 계절별, 설비별 특성을 적절히 활용하여 연평균 집열기 효율은 70%수준으로 유지하면서, 계절별 성적계수는 '4'수준을 목표로 하여 추진되었으며, 그간, 태양열 이용 보급분야의 실용화는 주로 건물의 급탕용 온수생산의 수준에 머물렀으나 이 단계를 극복한 건물의 냉 난방 및 급탕을 위한 태양열 및 공기열원을 활용한 하이브리드(Hybrid)냉난방 시스템 구축하였다. 아울러, 태양열 이용 하이브리드 냉난방 히트펌프 시스템 실증 실험은 유가상승과 신재생에너지에 대한 국가적 분위기 고취로 어느때 보다도 개발기술의 상용화 및 실용화적 측면의 염두와 태양열 이용 Hybrid냉난방 시스템의 효율향상과 저가화를 통해 기술의 경제성과 신뢰성을 확보하여 태양열 이용 시스템의 보급활성화를 목표로 하고 있다.

  • PDF

Performance Analysis of Solar Heating System for High Solar Fraction using TRNSYS (태양열 온수급탕 시스템의 TRNSYS 열성능 분석)

  • Sohn, Jin-Gug
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.59-67
    • /
    • 2012
  • In this paper, performances of solar hot water supply systems are parametrically analyzed with the variations of solar collector area, slope of collector and volume of storage. All simulations are conducted by using TRNSYS computer program. Average solar fractions, collector efficiencies and temperatures of storage are investigated monthly as well as annually. For system analysis, the maximum value of monthly average solar fractions has a limitation of 90 percent. As a result, the designed solar thermal system with $6m^2$ collector area, $50^{\circ}$ slope and $0.36m^2$ storage volume could provide almost an annual average solar fraction of 72 percent. By increasing the storage volume to $0.42m^2$, the annual solar fraction of system increases up to 73 percent.

Study on the Performance Characteristics of the Solar Hybrid System with Heat Pump Operating Temperature during Winter Season (겨울철 열펌프 작동온도에 따른 태양열 하이브리드 시스템의 성능특성에 관한 연구)

  • Kim, Won-Seok;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.821-827
    • /
    • 2010
  • Study on the performance characteristics of the solar hybrid system with heat pump operating temperature during winter season has performed by using an experimental test. The system performance and operating characteristics with the heat pump operating temperature, hour and load condition were investigated and analyzed. As a result, the hot water temperature was significantly affected by the heat pump operating temperature at the morning(time 1) and noon(time 2). However, hot water temperature was set by the radiation quality and collecting operation hour at the afternoon(time 3). In addition to the solar fraction was decreased for the high heat pump operating temperature because the heat pump operated with a long operating time and short operating period.

Study on the Performance Analysis of Solar Heating System with Cloud Cover (운량에 따른 태양열 시스템의 성능 분석에 관한 연구)

  • Kim, Won-Seok;Pyo, Jong-Hyun;Cho, Hong-Hyun;Ryu, Nam-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1215-1219
    • /
    • 2009
  • In this study, the performance of solar assisted hybrid heat pump system with cloud cover were analyzed by using experimental method in spring season. It was consisted of concentric evacuated tube solar collector, heat medium tank, heat storage tank, heat pump, and so on. As a result, the solar radiation should be maintained over $4.1\;MJ/m^2$ in order to operate solar heating system for heating. Solar heat of collector wasn't affected by ambient temperature, but cloud cover has a big effect to collector efficiency. In addition, the collector efficiency is about 50-60%, and solar fraction is 40% for this system.

  • PDF

Experimental Study on the Operating Characteristics of a Solar Hybrid Heat Pump System according to Indoor Setting Temperature (실내설정온도에 따른 태양열 하이브리드 열펌프 시스템 운전특성에 대한 실험적 연구)

  • Kim, Won-Seok;Cho, Hong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.50-58
    • /
    • 2010
  • Experimental study on the operating characteristics of a solar hybrid heat pump system according to indoor setting temperature were carried out during spring and winter season. The system was consisted of a concentric evacuated tube solar collector, heat medium tank, heat storage tank, and heat pump. As a result, the heating load was increased by 21.1% when the indoor setting temperature rose by 2oC for the same ambient temperature. Besides, the spring season had good outdoor conditions compared to the winter season, therefore the heating load was reduced and heat gain by collector increased, relatively. In case of the winter season, the solar fraction was shown less than 10% because the heat losses of system and space increased considerably. The solar fraction decreased significantly as the indoor setting temperature increased.

Study on the Performance Characteristics of Hybrid Solar Heating System during Spring Season (봄철 태양열 하이브리드 시스템의 성능특성 연구)

  • Pyo, Jong-Hyun;Kim, Won-Seok;Cho, Hong-Hyun;Park, Cha-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.296-303
    • /
    • 2010
  • An experimental study was carried out to investigate performance characteristics of the hybrid solar system during spring season. The system operating condition, each load, and heat pump performance were analyzed with the cloud cover. As a results, the collector heat, solar fraction, and hot water load were decreased with a rise of the cloud. The heating load was considerably effected by the ambient temperature regardless of the cloud cover. Besides, the temperature of hot water increased with the solar radiation. The COP of the heat pump was significantly influenced by the ambient temperature, that was 2.09~2.46 for gray day and 1.94~2.71 for fair day, respectively.

An Experimental Study on the Solar Hot Water Heating System for the Dormitory of University (기숙사 태양열 급탕시스템의 열성능에 관한 실증연구)

  • Shin, U-Cheul;Baek, Nam-Choon;Kwak, Hee-Yeul;Ju, Hyunlo-Lo
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • The Purpose of this work is to investigate a long-term thermal performance of active solar hot water heating system for the dormitory of university. For this, monitering system including temperature sensors, flow-meters was installed in this system. Measurement was continued for 13 months between April 1st 2004 and May 31th 2005. As results, hot water demand, daily and monthly hot water load distribution which are necessary for the solar system design were suggested. Also thermal stratification in solar buffer tank was observed in the point of increasement of system efficiency. The yearly solar fraction and system efficiency of this system are about 29.5% and 44.9% respectively.

Energy Performance Analysis of Solar Hot Water Heating System used in an Office Building Using the Dynamic Simulation (시뮬레이션을 이용한 사무소건물 적용 태양열 급탕시스템의 에너지성능 분석)

  • Ko, Myeong-Jin;Choi, Doo-Sung;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.281-285
    • /
    • 2009
  • This paper is to simulate a solar hot water heating system used in a medium-scale office building using the dynamic simulation. This study is focused chiefly on the annual variation of energy performance, the solar fraction with respect to the difference of hot water load temperature. For this purpose the simple model of a solar hot water heating system has been considered with TRNSYS program and the simulations were performed with the weather data in Seoul, Korea. The share ratio of solar hot water system of the summer season appeared higher than the winter season because that the decrease of the domestic hot water load was far despite the relative decrease of the solar radiation. As the temperature was lower from $60^{\circ}C$ to $50^{\circ}C$, the solar fraction increases 8.1 percent due to 20-percent decrease of annual hot water load.

  • PDF

A Study on the Field Test of the Solar Heating System with Parabolic Solar Collectors Integrated the Roof of a Residential Building (지붕대체형 집광집열기를 이용한 태양열 난방시스템의 동절기 성능 평가)

  • Kim, Yong-Ki;Lee, Tae-Won;Yoon, Kwang-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2007
  • The final energy consumption in the building sector in Korea represents almost 20% of the total energy consumption. Besides, Space heating and hot water generation in Korea are based on fossil fuels, with a serious environmental impact. Despite the popularity of simple solar domestic hot water systems, active solar space heating remains, for various reasons, marginal. And thus, the aim of this paper is to demonstrate potentialities of solar assisted space heating systems, both technically and economically. From this study found that the solar heating system with CPC solar collectors integrated the roof of a single-story residential building shares $50{\sim}55%$ of the annual heating load.

A Study on Performance of Solar Thermal System for Domestic Hot Water According to the Weather Conditions and Feedwater Temperatures at Different Locations in Korea (지역별 기상조건과 급수온도에 따른 태양열 온수공급 시스템 성능에 관한 연구)

  • Sohn, Jin Gug
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.41-54
    • /
    • 2019
  • The purpose of this study is to analyze the performance of solar thermal system according to regional weather conditions and feedwater temperature. The performance analysis of the system was carried out for the annual and winter periods in terms of solar fraction, collector efficiency and it's optimal degree. The system is simulated using TRNSYS program for 6 cities, Seoul, Incheon, Gangneung, Mokpo, Gwangju, and Ulsan. Simulation results prove that the solar fraction of the system varies greatly from region to region, depending on weather conditions and feedwater temperatures. Monthly average solar fraction for winter season from November to February, a time when heat energy is most required, indicated that the highest is 73.6% in Gangnueng and the lowest is 56.9% in Seoul. This is about 30% relative difference between the two cities. On the other hand, the collector efficiency of the system for all six cities was analyzed in the range between 40% and 42%, indicating small difference compare to the solar fraction. The annual average solar fraction is rated the highest at 40 collector degree, while monthly average solar fraction during winter season is rated at 60 degree.