• Title/Summary/Keyword: 태양열 아파트

Search Result 9, Processing Time 0.021 seconds

월간건축정보

  • Korea Institute of Registered Architects
    • Korean Architects
    • /
    • no.11 s.129
    • /
    • pp.84-91
    • /
    • 1979
  • PDF

Experimental Study on the Thermal Behavior of Solar Space Heating & Hot Water System in Apartment (아파트 적용 태양열 난방 및 급탕시스템의 열적 거동에 관한 실험연구)

  • Shin, U-Cherul;Baek, Nam-Choon;Kim, Jong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.127-134
    • /
    • 2006
  • In this paper, an experiment was carried out to investigate the thermal behavior and performance on a solar space heating & hot water system in an apartment. Measurement was continued for 6 months between January 1st 2004 and June 31th 2004. The results show that there is no problem in control and operation in case of connection this system with conventional space heating and hot water system, and that the thermal performance of this system and indoor thermal environment is good.

Solar Thermal Deployment During the 2nd Basic Renewable Period - The Prospect of Million Solar Roof Program : 2003-2012 in Korea - (제2차 신재생 기본계획과 태양열 보급목표 - 태양열 100만 호 달성 과연 가능한가 -)

  • Kim, Jong-Sun;Park, Geun-Seong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.168-171
    • /
    • 2006
  • The Korean Solar Thermal Industry hopes to realize 1 Million Solar Thermal Roofs. According to the 2nd Renewable Basic Plan : 2003-2012 the Government showed a very aggressive Solar Thermal Deployment Plan including Solar Thermal Apartment Housings Program. Owing to the Vision Statement such as Million Solar Thermal Roofs Program Korean Solar thermal Industry also can bring another shinny days Especially the more solar thermal applications such as to the Apartment Housings and Green Villages could bring a sustainable Solar Society Korea The RPA Program by the 9 Major Non-Private Energy Corporal ions and the RPS Program for the Solar Thermal Energy shall be another useful policy for the realization of Million Solar Korea era.

  • PDF

A Study on Solar Heating System Technology Combining Multiple Technology with Mutual-Complementary Method - Low-cost, high efficiency, large-scale use of solar heating system - (다원기술 상호보완식 태양열 난방기술 - 저원가 고효율 규모화 태양열 난방 방안 -)

  • Nan, Bao-Xuan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.15-23
    • /
    • 2008
  • The article deals with system technology of a new solar heating system which systematically combines exiting solar collector technology, auxiliary electrical water heating, floor heating system and well insulated construction method and its application of this system to apartment house heating system in the cold region, and also analyzed performance of the new system in terms of technical and economic feasibility. Results shows that energy efficiency approaches up to 50% of the energy consumption of local construction from 1980 to 1981. The implementation of "DQ technology" to floor heating system achieved from 79% to 85% of the energy-saving benefits comparing to other housing units which were supplied by the local district heating plant.

Feasibility of a Solar Thermal Organic Rankine Cycle Power Plant for an Apartment Complex with Aspen Plus® (ASPEN PLUS®를 이용한 태양열 유기랭킨사이클 열병합 발전시스템의 공동주택 적합도 분석)

  • Im, Seokyeon;Kim, Hyung-Geun;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • In this study, a solar thermal system is designed to provide hot water and electricity for improvement of solar thermal energy availability in an apartment complex. The electricity is generated with Organic Rankine Cycle (ORC) by the solar thermal energy. R134a, R141b and R245fa are selected for operating fluid of the solar thermal ORC system. ORC with R245fa shows the best performance based on the variation of pressure. The irreversibility of component showed that the technology advance of the evaporator ensures a performance improvement. The sensitivity study results indicate that the turbine performance is most effective way to improve the performance of ORC system. An economic analysis showed that approximately 50% more income could be achieved by a solar thermal ORC system with a hot water supply.

에스코국내소식

  • Korean association for escos
    • The Magazine for Energy Service Companies
    • /
    • s.39
    • /
    • pp.70-73
    • /
    • 2006
  • 클린 에너시 시장 "2015년 1672억 달러로 성장"/대림산업 양주 택지지구에 구역형 집단에너지 사업/산자부 에너지진단의무화 입법예고/동아전람 '제2회 동아 빌딩박람회'참가업제 모집/에너지기술연 제지설비 응축열 재활용 '열교환기'상용화/산자부 환경친화 산업구조개선 법률 개정/미국 냉동공조공학회 이진원 교수·이상민 박사에 최고논문상/광주시 그린빌리지, 수소연료전지 본격가동/대전 신동아파트 소형열병합 ESCO자금 상황 '끝'/기획예산처 교육세 일부 환경,에너 지 분야에 활용/유기태양전지 개방 '청신호'/중소기업청 신기술 제품 공공구매 본격 확대/에노지관리공담 혁신도시 건설을 위한 신·재생에너지보급 촉진 간담 회 개최/산자부 온실가스 배출통계 시스템 구축

  • PDF

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.