• Title/Summary/Keyword: 태양열 복사

Search Result 126, Processing Time 0.027 seconds

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.

Analysis of Passive Cooling Effect of the Tree by Field Observations in the Summer (하절기 단일 수목의 열 환경 관측을 통한 서열완화 효과 해석)

  • Choi, Dong-Ho;Lee, By-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.109-118
    • /
    • 2006
  • The tree is regarded as an sustainable architectural outdoor design element which reduce urban heat island effect by its solar shading and evapotranspiration. This study carried out field observations of measuring thermal environment of selected tree and its ambience to determine passive cooling effects. Results from the field observations are as below; Tree-shading effect to the thermal environment can not be properly evaluated by merely measuring air temperature differences between tree-shaded space and unshaded space for the maximum temperature difference is less than $1.5^{\circ}C$. The differences of longwave radiation and shortwave radiation between tree-shaded space and unshaded space are measured. Shortwave radiation is considered as a main thermal comfort determining factor for the difference of the shortwave radiation is much bigger than that of longwave radiation. By thermal infrared image analysis, the surface temperature of the tree under strong solar radiation is measured same as ambient air temperature. By which the evapotranspiration is considered to retard tree surface temperature raising effectively.

Temporal and spatial distributions of heat fluxes in the East Sea(Sea of Japan) (東海熱收支 의 時.空間的인 分布)

  • 박원선;오임상
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.91-115
    • /
    • 1995
  • Air-sea heat fluxes in the East Sea were estimated from the various ship's data observed from 1961 to 1990 and the JMA buoy #6 data from 1976 to 1985. The oceanic heat transport in the sea was also determined from the fluxes above and the heat storage rate of the upper layer of 200m from the sea surface. In winter, The incoming solar radiation is almost balanced with the outgoing longwave radiation. but the sea loses her heat through the sea surface mainly due to the latent and sensible heat fluxes. The spatial variation of the net surface heat flux is about 100 Wm/SUP -2/, and the maximum loss of heat is occurred near the Tsugaru Strait. There are also lots of heat losses in the southern part of the East Sea, Korea Strait and Ulleung Basin. Particularly, the heat strong loss in the south-western part of the sea might be concerned with the formation of her Intermediate Homogeneous Water. In summer, the sea is heated up to about 120∼140 Wm/SUP -2/ sue to strong incoming solar radiation and weak turbulent heat fluxes and her spatial variation is only about 20 Wm/SUP -2/. The oceanic heat flux is positive in the southeasten part f the sea and the magnitude of the flux is larger than that of the net surface heat flux. This shows the importance of the area. In the southwestern part of the sea, however, the oceanic heat flux is negative. This fact implies cold water inflow, the North Korean Cold Water. The sigh of net surface heat flux is changed from negative to positive in March and from positive to negative in September. The heat content in the upper surface 200 m from the sea surface reaches its minimum in March and maximum in October. The annual variation of the net surface heat flux is 580 Wm/SUP -2/ in southwestern part of the sea. The annual mean values of net surface heat fluxes are negative, which mean the net heat transfer from the sea to the atmosphere. The magnitude of the flux is about 130 Wm/SUP -2/ near the Tsugaru Strait. The net surface fluxes in the Korea Strait and the Ulleung Basin are relatively larger than those of the rest areas. The spatial mean values of surface heat fluxes from 35$^{\circ}C$ to 39$^{\circ}$N are 129, -90, -58, and -32 Wm/SUP -2/ for the incoming solar radiation, latent hear flux, outgoing longwave radiation, and sensible heat flux, respectively.

  • PDF

Design of the Condenser and Automation of a Solar Powered Water Pump (태양열 물펌프의 운전 자동화 설계)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;Lee Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.141-154
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which the electrical power is not available. The average so]ar radiation energy is 3.488 kWh/($m^2{\cdot}day$) in Korea. In this study, the automatic control logic and system of the water pump driven by the radiation energy were studied, designed, assembled, tested and analyzed for realizing the solar powered water pump. The experimental system was operated automatically and the cycle was continued. The average quantity of the water pumped per cycle was about 5,320 cc. The cycle time was about 4.9 minutes. The thermal efficiency of the system was about $0.030\%$. The pressure level of the n-pentane vapour in flash tank was 150$\%$450 hPa(gauge) which was set by the computer program for the control of the vapour supply. The pressure in the condenser and air tank during cycles was maintained as about 600 hPa and 1,200 hPa respectively. The water could be pumped by the amount of 128kg/($m^2{\cdot}day$) with the efficiency of $0.1\%$ and the pumping head of 10 m for the average solar energy in Korea.

  • PDF

대형 열진공챔버용 극저온 모사장치 개발

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Moon, Guee-Won;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.103-108
    • /
    • 2004
  • The space environment is characterized such a severe condition as high vacuum and very low temperature. Since a satellite will be exposed such a space environment as soon as it goes into the its orbit, thermal vacuum test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. KARI has a thermal vacuum chamber with useful dimensions of ∮3.6m×L3m, in which KOMPSAT-1 and KOMPSAT-2 satellites were tested. But very large thermal vacuum chamber with useful dimensions of ∮8m×L10m has been needed to meet the future demand of large satellites. Generally, the thermal vacuum chamber can be divided into a vacuum system and a thermal system. Especially, a cryogenic system in the thermal system simulates very low temperature of -196℃ under the high vacuum condition. In this paper, we propose the new cryogenic system can be applied to the future large thermal vacuum chamber.

  • PDF

A study on solar irradiance forecasting with weather variables (기상변수를 활용한 일사량 예측 연구)

  • Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.1005-1013
    • /
    • 2017
  • In this paper, we investigate the performances of time series models to forecast irradiance that consider weather variables such as temperature, humidity, cloud cover and Global Horizontal Irradiance. We first introduce the time series models and show that regression ARIMAX has the best performance with other models such as ARIMA and multiple regression models.

Seasonal Variation of Surface Temperatures in the Neighbouring Seas of Korea (韓國周邊 海洋表面水溫의 季節的 變化)

  • Kang, Yong Q;Jin, Myoung-Shin
    • 한국해양학회지
    • /
    • v.19 no.1
    • /
    • pp.31-35
    • /
    • 1984
  • The seasonal variation of sea surface temperatures (SST) in the neighbouring seas of Korea was studied performing the harmonic analysis of the monthly mean SST data of 15 years (1961-1975) at 182 stations routinely collected by the Fisheries Research and Development Agency. The mean SST in the West Sea (Yellow Sea) is lower than that in the East Sea (Sea of Japan) whereas the annual range of SST in the West Sea is much larger than that in the East Sea. The maximum SST occurs between mid August and early September. The seasonal variation of SST in the seas of Korea is influenced by incoming radiation and heat advections by ocean currents and winds.

  • PDF

Analysis of Monopropellant Thruster Plume Effects by DSMC (DSMC를 이용한 단일추진제 추력기 플룸의 영향 해석)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Kim, Su-Kyum;You, Jae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.179-182
    • /
    • 2007
  • The new KOMPSAT in preliminary design phase will utilize 4.45 N monopropellant thrusters for attitude and orbit control. In this paper, a numerical plume analysis is performed to verify the effects of thruster plume on the satellite with a 3-D satellite base region model by DSMC. As a result, plume behaviors such as overall plume temperature, total density and thermal radiation to solar array are estimated.

  • PDF

Development of the sunshade hat with a large brim(Part I) -Development and test with manikins- (양산형 일광차단모의 개발(제1보) -고안 및 마네킹 착용실험-)

  • 김경수;최정화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.8
    • /
    • pp.1177-1185
    • /
    • 2002
  • This study was to develop the sunshade hat which reduced stress from solar radiation and ultraviolet radiation (UV), in order to keep the farmer's health and to promote their work efficiency. The new sunshade hat with a large brim, special structure for ventilation, stability and portability was designed and tested with manikin heads outdoors. Two newly designed sunshade hats(A, B) and three existing hat were tested Sunshade hat A made of double fabric with aluminum coating-nylon and black cotton cloth with a polyester mix(T/C) was the most protective from solar radiation. Sunshade hat B with larger brim was the most protective from ultraviolet radiation, even though it was made of aluminum coating-nylon single fabric.

Developing a Model to Predict Road Surface Temperature using a Heat-Balance Method, Taking into Traffic Volume (교통량을 고려한 열수지법에 의한 노면온도 예측모형의 구축)

  • Son, Young-Tae;Jeon, Jin-Suk;Whang, Jun-Mun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.30-38
    • /
    • 2015
  • In this study, to improve effectiveness of road management services and the safety of the road in winter, road surface temperature prediction model was developed. We have utilized the existing input data of meteorological data and additional traffic data. This Road surface temperature prediction model was utilizing a Heat-Balance Method additionally considering amount of traffic that produce heat radiation by vehicle-tire friction. This improved model was compared to the based model to check into influence of traffic affecting the road surface temperature. There were verified by comparing the real observed road surface temperature of the third Gyeong-In highway and road surface temperature from the two models. As a result, the error of real observed and the predicted value (RMSE) was found to average $1.97^{\circ}C$. Observed road surface temperature was dramatically affected by the sunlight from 6 a.m. to 2 p.m. and degree of influence decreases after that. The predictive value of the model is lower than the observed value in the afternoon, and higher at night. These results appear due to the shielding of solar radiation caused by the vehicle in the afternoon and at night, the vehicle appeared to cause thermal heat supply.