• Title/Summary/Keyword: 태양열펌프

Search Result 53, Processing Time 0.025 seconds

Study on the Thermal Performance of a Solar Assisted Heat Pump System with a Hybrid Collector (태양열/공기열 복합 집열기를 가지는 하이브리드 히트펌프 시스템의 열성능에 관한 연구)

  • DO, KYU HYUNG;CHOI, BYUNG-IL;HAN, YONG-SHIK;KIM, MYUNGBAE;KIM, TAEHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.182-191
    • /
    • 2016
  • In the present work, a solar assisted heat pump (SAHP) system with a hybrid collector was analyzed. For this, a simplified thermodynamic model was developed. Based on the proposed model, the heat transfer rate, COP, and the annual operating hour of the SAHP system were estimated. The effect of the variation of system design parameters on the performance of the system was also examined. From the results, the performance was improved with increasing the effectiveness of heat exchangers and decreasing the difference between the evaporation temperature and the outlet brine temperature of the hybrid collector loop. Finally, the performance of SAHP system with a hybrid collector was compared with that of conventional serial and parallel SAHP systems. The SAHP system with a hybrid collector was substantially better than a series system and slightly worse than a parallel system for both the yearly averaged heat transfer rate and COP. However, the annual operating hour of the SAHP system with a hybrid collector was much better than that of a parallel system.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiCl-$CaCl_2-Zn(NO_3)_2$ Solution at Solar Evaporator Heating (LiCl-$CaCl_2-Zn(NO_3)_2$ 수용액을 사용하는 흡수 2중효용 시스템에서 태양열을 증발기 열원으로 사용하는 난방기의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.87-94
    • /
    • 2007
  • In this paper, with water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture which utilizes solar energy at the evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiCl-$CaCl_2-Zn(NO_3)_2$ mixture than for the water-LiBr pair, and FR is lower for the former.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr- LiSCN Solution As $20{\sim}40^{\circ}C$ Range Solar Evaporator Heating (태양열을 증발기 열원으로 사용($20{\sim}40^{\circ}C$범위)하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • In this paper, with water-LiBr-LiSCN mixture which utilizes solar energy as mid temperature range evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

Study on the Performance Prediction Simulation of the Heat Pump System using Solar and Geothermal Heat Source (태양열 및 지열 이용 히트펌프 시스템의 성능예측 시뮬레이션에 관한 연구)

  • Nam, Yu-Jin;Gao, Xin-Yan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • Recently, the use of renewable energy has been attracted due to the interest in energy-saving and the reduction of CO2 emission. In order to reduce the energy consumption of the cooling and the heating in the field of the architectural engineering, heat pump systems using renewable energy have been developed and used in various applications. In many researches, integrated heat pump systems are suggested which use solar and geothermal heat as the heat source for cooling and heating. However, it is still difficult to predict the performance of the systems, because the characteristic of heat exchange in each system is complicated and various. In this system, the performance prediction simulation of the heat pump was developed using a dynamic simulation model. This paper describes the summary of the suggested systems and the result of the simulation. The average temperature of the heat source, heating loads and COP were calculated with the cases of different local conditions, different system composition and different operation time by TRNSYS 17.

Numerical Analysis on Heat Gain of Liquid from Ambient Air with Various Fin Heights and Pitches of Fin-and-Tube Heat Exchanger in Hybrid Solar Collector (핀-튜브 열교환 구조를 갖는 복합집열기에서 핀 높이 및 간격에 따른 공기열 이용 액체 가열 성능에 관한 수치해석 연구)

  • Choi, Hwi-Ung;Fatkhur, Rokhman;Lyu, Nam-Jin;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.53-61
    • /
    • 2016
  • Solar assisted heat pump system uses solar thermal energy as a heat source of evaporator of heat pump. So, COP can be enhanced as well as collector efficiency. For improving performance of this system, some research about hybrid solar collector that has fin-and-tube heat exchanger has been conducted. This collector can get a thermal energy from ambient air for liquid heating, so heated liquid can be used as a heat source of evaporator in heat pump even the solar radiation is not enough. In this study, numerical analysis was conducted for confirming heat gain of liquid according to fin height and pitch of fin-and-tube heat exchanger in collector. As a result, higher heat gain was obtained on lower fin height and narrow fin pitch, but the pressure drop also increased with increment of heat gain. Thus the JF factor considering both heat transfer enhancement and pressure drop was investigated and the maximum value was shown when the fin height and pitch were 40mm and 45mm. So it is considered that this installation condition has a highest heat transfer improvement when comparing with pressure drop. However heat gain of liquid at this condition was less than the other installation conditions of fin pitch on same height. Then, after establishing a proper minimum heat gain of liquid, actual production and experiment of collector will be conducted with fin height and pitch showing maximum JF factor and satisfying selected minimum heat gain of liquid on the basis of results of this study.

Study on Heating Performance of Hybrid Heat Pump System Using Geothermal Source and Solar Heat for Protected Horticulture (시설원예용 지열 및 태양열 이용 하이브리드 히트펌프 시스템의 난방성능에 관한 연구)

  • Jeon, Jong Gil;Lee, Dong Geon;Paek, Yee;Kim, Hyung Gweon
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.49-56
    • /
    • 2015
  • In this study a hybrid heating system based on geothermal source and solar heat was developed in order to save energy for greenhouse heating and its field performance was evaluated. Developed system are composed of following parts: water tank, heat exchanger, heat pump, fan coil unit and heat storage unit. The working performance test was carried out in a greenhouse cultivating oriental orchids being managed by $23^{\circ}C$. Field performance test results showed that average heating coefficient of performance ($COP_h$) was 3.4 for the period from mid-January to mid-March 2013. Heating coefficient of performance ($COP_h$) of developed hybrid heat pump system was more sensitive to water tank temperature than outside air temperature. This study showed that developed hybrid heat pump system has a potential to save the heating costs up to 91% compared to conventional agricultural oil heaters.

A Study of Bubble Pump that is applied Solar Heating Water System (태양열 온수 시스템에 적용한 기포펌프의 동작특성에 관한 연구)

  • Park, G.T.;Song, L.;Shim, K.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • Regarding the need of energy in advance and the depletion of fossil fuel energy, all researches around the world now are trying to extract energy from many alternative sources especially the renewable one. Solar, ocean tidal, wind and geothermal energy are renewable energy fields which many researches are focused on. This paper explains about effort to replace electric pump used in solar water heating system by bubble pump. The utilization of bubble pump in this system is very efficient since it needs heat energy for its operation that can be obtained easily. In addition, it can also simplify the construction of the system. Bubble pump also functions as a controller to circulate water inside the system. Before the installation of bubble pump, the special quality and performance of bubble pump should be analyzed. The result got from the analysis could show the fluctuation of water flow rate occurred because it sensitively reacts to the heat quantity. Here the heat quantity is taken from the solar that, as we know, is not stable in a whole day. Problems often occurred are the flow rate in this system is very low moreover it could be stop if the pressure exceeds the limit.

  • PDF

The hybrid heat pump with solar energy for heating (태양열이용 하이브리드 난방 열펌프시스템)

  • Kim, Ji-Young;Ko, Gwang-Soo;Kang, Byung-Chan;Park, Youn-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.173-178
    • /
    • 2005
  • Recently. we interested in renewable energy due to cost increase of the crude oil, etc. In this study solar assisted hybrid heat pump system that uses the solar heat and air as heat source analyzed by experimentally.'rho system could runs at dual mode. One is thermal storage mode of solar energy at day time and the other is heat pump mode with low temperature air as heat source at night time. In case of setting temperature over the limited range. high temperature water heated at the solar energy collecting tubes supplied to the storage tank. As results. it is founded that the heat pump performance Is higher than general heat pump which using the only air as a heat source. The developed system could be used as main healing equipment for the panel heating for the residential house.

  • PDF

Analysis of Thermodynamic Design Data for Cooling of Double -Effect Absorption System of Solar Energy using LiBr - water and Ethylene Glycol Mixture (흡수액으로 에틸렌글리콜이 혼합되고 태양열을 이용한 이중효용 흡수식 시스템의 냉방 특성해석)

  • Won, Seung-Ho;Park, Sang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.45-54
    • /
    • 2003
  • For cooling of double effect absorption heat pump system of solar heating source, analysis of thermodynamic design data has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data, enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture ($H_2O$ : CHO ratio 10:1 by mole) by computer simulation are done. The obtained results, COP and mass flow ratio of the water - lithium bromide - ethylene glycol system, are compared with data for the water-Libr pair solution.

Performance Improvement of an Air Source Heat Pump by Storage of Surplus Solar Energy in Greenhouse (온실 내 잉여 태양열을 이용한 공기열원 히트펌프 성능향상)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Kang, Youn Ku;Kim, Chung Kil;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.328-334
    • /
    • 2013
  • A greenhouse heating system to improve heat pump performance using inside and outside air of greenhouse as a heat source selectively and cut $CO_2$ enrichment costs by delay of greenhouse ventilation was developed. In this system, thermal storage modes divided into inside circulation mode using surplus solar energy and outside circulation mode using outside air heat. The thermal storage modes were designed to be switched mutually according to inside greenhouse temperature and six temperature values were input to control the heat pump operating, thermal storage mode switching and greenhouse heating automatically. Operating characteristics of this system were tested in a plastic greenhouse of non-ventilation condition. The results of test showed that the inside circulation mode began at about 11:00 and lasted for about 210 minutes and inside greenhouse temperature was maintained between $20{\sim}28^{\circ}C$ in spite of non-ventilation. System heating COP of the inside circulation mode in the daytime was 3.35, which was 36% and 25% higher than that of the outside circulation modes in the nighttime and daytime respectively.