• 제목/요약/키워드: 태양열집광시스템

검색결과 33건 처리시간 0.017초

접시형 태양열 집광 시스템을 이용한 열화학 사이클의 수소생산 (TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM)

  • 권해성;오상준;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.169-176
    • /
    • 2011
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction)and W-D (Water Decomposition)steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $NiFe_2O_4/m-ZrO_2$powder, was successfully achieved hydrogen production with 9 (10 with a Xe-light solar simulator, 2009, Kodama et al.) repeated cycles under field conditions. Two foam device used in this study were tested for validation before an experiment was performed. The lab scale ferrite-conversion rate was in the range of 24~76%. Two foam devices were designed to for structural stability in this study. In the results of the experiments, the hydrogen percentage of the weight of each foam device was 7.194 and $9.954{\mu}mol\;g^{-1}$ onaverage, and the conversion rates 4.49~29.97 and 2.55~58.83%, respectively.

  • PDF

국내 직달일사량 자원 분석 (Analysis of Direct Normal Insolation Resources in Korea)

  • 조덕기;윤창열;김광득;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.130.1-130.1
    • /
    • 2011
  • Since the direct normal insolation is a main factor for designing any solar thermal power system, it is necessary to evaluate its characteristics all over the country. We have begun collecting direct normal insolation data since December 1992 at 16 different locations and considerable effort has been made for constructing a standard value from measured data at each station. KIER(Korea Institute of Energy Research)'s new data will be extensively used by solar thermal concentrating system users or designers as well as by research institutes. From the results, we can conclude that 1) Yearly mean $2.67kWh/m^2/day$ of the all day's direct normal insolation was evaluated for all days all over the 16 areas in Korea. 2) All day's direct normal insolation of spring and summer were $2.91kWh/m^2/day$ and $2.23kWh/m^2/day$, and for fall and winter their values were $2.78kWh/m^2/day$ and $2.77kWh/m^2/day$ respectively. So, spring, fall and winter were higher, and summer was lower than the yearly mean value.

  • PDF

10 kW급 접시형 태양열발전시스템 사업모델 개발 및 운전특성 분석 (Development of 10 kW Dish-Stirling System for Commercialization and Analysis of Operating Characteristics)

  • 김종규;이상남;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.118-124
    • /
    • 2010
  • In order to develop commercial model of 10kW dish-Stirling solar thermal power system, modification for the exiting facility was taken for a year as a Leading Project in KIER. During the project, solar tracking system, control and monitoring system and high durability reflector were developed and long term operation were performed. The solar tracking system was tested for four months to investigate the degree of precision and adapted to the control system for an actual operation from October in 2009. The sun tracking accuracy of ${\pm}4$ mrad using modified control system was obtained and the system operated successfully during the experimental period. The monitoring system displays engine pressure, electric generation amounts, generator RPM, receiver temperatures, and etc. from Stirling engine and weather data of Direct Normal Irradiation, Horizontal Global Insolation, wind speed & direction, and atmosphere temperature from weather station. According to the operating results in a clear sky day, electric power of 6,890 W was generated at the DNI value of 850 W/$m^2$ and the averaged solar-to-electricity efficiency during a whole day reached to 18.99%. From the overall operating results, linear power generation trend could be observed with increasing DNI value. The solar-to-electricity efficiency achieved to 19% around the DNI value of 700 W/$m^2$ and increased to 20% when the DNI value goes up to 900 W/$m^2$.