• 제목/요약/키워드: 태양열시스템

검색결과 615건 처리시간 0.023초

태양열 이용 해양온도차발전시스템의 성능 예측 (Performance Investigation of Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) in Korea)

  • ;이근식
    • 대한기계학회논문집B
    • /
    • 제37권1호
    • /
    • pp.43-49
    • /
    • 2013
  • 전력을 생산하기 위해 해양온도차발전을 이용하는 것은 재생에너지를 이용하고 환경을 보호하는 한 가지 방법이다. 본 연구에서는 울산지역의 기후조건이 태양열 이용 해양온도차발전(SH-OTEC)에 미치는 영향을 조사하기 위하여 시뮬레이션을 수행하였다. 태양열 에너지는 제 2 의 열원으로 사용되었다. SH-OTEC 시스템에 사용할 가장 적합한 작동유체를 선정하기 위하여 여러 작동유체를 수치모사하였다. 해석결과, R152A 가 가장 적합한 작동유체로 나타났으며, R600 와 R600A 가 각각 그 다음 순으로 나타났다. 집열판 출구온도를 $20^{\circ}C$ 증가하였을 때 집열판의 유효면적은 월평균 태양에너지 게인(gain)의 변화로 인하여 $50m^2$ 에서 $97m^2$ 으로 요동함을 볼 수 있었다. 2-4%의 전형적인 해양온도차발전의 효율은 태양열을 이용함으로써 연평균 효율은 6.23%까지 증가하였다.

공동주택의 열부하 및 탄소배출량 저감을 위한 태양열시스템의 최적 적용 방안 연구 (A Study on the Optimum Application Method of Solar Thermal System to reduce Thermal Load and Carbon Emission in Apartment Building)

  • 윤종호;심세라;신우철;백남춘;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.135-142
    • /
    • 2011
  • Architectural market in the world is trying to develop Zero Carbon Buildng that doesn"t use fossil fuel. Residential building that thermal load such as heating and domestic hot water is over 70% in energy consumption is easy to make Zero Carbon Building compared with office building that is mainly electric load. So, As a preliminary for analyzing the effect of Solar thermal system in the building, an annual energy consumption of residential building and total heat loads are calculated. Based on this result, three alternatives of solar thermal system for hot water and heating are applied in the building while installation area is increasing. Solar thermal system is applied on balcony and roof of apartment building as the way to reduce thermal load. In the first case that solar thermal system for hot water is applied on the balcony, optimum installation area is $56m^2$. And you could install $40m^2$ of this system in the roof that angle is $30^{\circ}$. In the second case of solar thermal system for heating and hot water, you can install $40m^2$ on the roof. As a result of economic evaluation, the most economical application method is to install $40m^2$ of solar thermal system for only hot water on the roof of the building. At that time, you can payback the initial investing cost within 10 years. And carbon emission of this method can be reduced until about 4 ton per year.

CFD를 활용한 태양열 공기가열기 내 사각저항체 설치 조건에 따른 열전달 및 압력강하에 관한 연구 (Research on the Heat Transfer and Pressure Drop by Installation Conditions of Rectangular Obstacle in a Solar Air Heater Based on CFD)

  • 최휘웅;김영복;손창효;윤정인;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.77-89
    • /
    • 2019
  • The solar air heater has various performances according to an obstacle installed in the air duct. Many studies on thermal performance have been conducted. But many of these studies were using a kind of rib type obstacle attached at the bottom of absorbing plate, but they are so hard to be manufactured. In this study, characteristics of the heat transfer and pressure drop in the solar air heater with various horizontal rectangular obstacles was investigated by CFD (Computational Fluid Dynamics) analysis. As a result, the heat transfer performance was improved from 1.2 to 3.32 times depending on installation conditions of rectangular obstacle. The pressure drop, however, also increased with increment of heat transfer performance from 2.8 to 180 times only by changing installation conditions of rectangular obstacle. Thus, the performance factor presenting the thermal performance enhancement on the same pressure drop was also confirmed. As a result, the highest value of 0.828 as better performance factor was obtained at the lower height of rectangular obstacle and this value has started to decrease with increment of heat transfer performance. In the end, it could be confirmed that the pressure drop was carried higher than the quantity of improvement of the heat transfer performance when the heat transfer performance was increased by change of installation conditions of rectangular obstacle. Both heat transfer enhancement and pressure drop to be required for system need to be considered before the rectangular obstacles are applied to the solar air heater.

열회수에 따른 고온 태양열 열화학 싸이클의 수소 생산에 관한 연구 (A Study on Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle by Heat Recovery)

  • 조지현;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제37권2호
    • /
    • pp.13-22
    • /
    • 2017
  • Two-step water splitting thermochemical cycle with $CeO_2/ZrO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2/ZrO_2$ foam device depending on heat recovery of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2/ZrO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. Resultantly, the quantity of hydrogen generation increased by 52.02% when the carrier gas of Thermal-Reduction step is preheated to $200^{\circ}C$ and, when the $N_2/steam$ is preheated to $200^{\circ}C$ in the Water-Decomposition step, the quantity of hydrogen generation increased by 35.85%. Therefore, it is important to retrieve the heat from the highly heated gases discharged from each of the reaction spaces in order to increase the reaction temperature of each of the stages and thereby increasing the quantity of hydrogen generated through this.