• Title/Summary/Keyword: 태양광 전송

Search Result 63, Processing Time 0.019 seconds

Ubiquitous sensor network based plant factory LED lighting system development (유비쿼터스 센서 네트워크 기반의 식물공장 LED 조명 시스템 개발)

  • Yang, Heekwon;Shin, Minseock;Lee, Chankil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.845-848
    • /
    • 2013
  • Due to intense climate changes and extreme weather conditions a noticeable decrease has been observed in the growth of certain plants. The indoor plant factories would have certain benefits including increase in crop yield, reduction in distribution cost, and maintains the healthy freshness level of the agricultural product. Recently, an artificial light source with optimum wavelength is spot lighted to fulfill the need of light for the indoor plant factories. The energy efficient light emitting diodes (LED) provide the essential light energy for the proper growth of indoor cultivated plants. This work focuses to utilize ubiquitous sensors network(USN) in providing suitable environment for the proper growth of agricultural product inside the indoor plant factory. The proposed system makes use of sensors and actuators, communicating each other through WPAN, ZigBee network. The proposed system obscured the traditional indoor plant factories with easy installation and wireless connectivity of the sensors and actuators along with eliminating the web of wires reducing the initial installation and maintenance cost.

  • PDF

Network Performance Verification for Next-Generation Power Distribution Management System Using FRTU Simulator (FRTU 시뮬레이터를 이용한 차세대 배전지능화시스템 네트워크 성능검증)

  • Yeo, Sang-Uk;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.523-529
    • /
    • 2020
  • Power distribution management system is essential for the efficient management and operation of power distribution networks. The power distribution system is a system that manages the distribution network based on IT, and has been evolving along with the development of the power industry. The current power distribution system is designed to operate at a relatively low network transmission speed based on the independent operation of the main equipment. However, due to distributed resources such as photovoltaic or energy storage devices, which are rapidly increasing in popularity in recent years, the operation of future distribution environments is becoming more complex, and various information needs to be collected in real time. In this study, the requirements of the next-generation power distribution system were derived to overcome the limitations of the existing power distribution system, and based on this, the communication network system and performance requirements for the distribution system were defined. In order to verify the performance of the designed system, a software-based terminal device simulator was developed because it takes excessive time and cost to introduce a large-scale system such as a power distribution system. Using the simulator, a test environment similar to the actual operation was established, and the number of terminal devices was increased up to 1,000. The proposed system was shown to satisfy the requirements to support the functions of the next-generation power distribution system, recording less than 10 % of the communication network bandwidth.

A Study on Performance Comparison of Multipurpose Function Electronic Measurement Reference Station Prototype System using LED and Gyro Sensor (LED 및 자이로센서를 이용한 다기능 전자측량기준점 프로토타입 시스템의 성능비교에 관한 연구)

  • Park, Sung-Kyun;Jung, Se-Hoon;Park, Dong-Gook;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1247-1255
    • /
    • 2013
  • In this paper, We proposes multipurpose function electronic measurement reference station prototype system based on LED and Gyro Sensor. This system have developed to possible with real time data collection and landscape illumination and surrounding diastrophism monitoring for that analyze problems of existing planted reference station. Hardware for the proposed system consists of a gyro sensor module to detect diastrophism, GPS module to process location information, environment sensor module to process surrounding environmental data and CDMA wireless data communication to send the collected data to server. In addition, this paper intends to enhance system management and future usability in a way that applies LED, QR-code, RFID and Solar cell module to outer side of electronic measurement reference station to improve usability of H/W for electronic measurement reference station. Lastly, this paper conducted current amount evaluation to supply stabilized electricity with its various functions in the proposed multipurpose function electronic measurement reference station and it's proved that this system can be stably operated with its electricity loss factor of 2.29% loss factor. And this paper conducted a qualitative comparison with existing electronic measurement reference station system in order to evaluate superiority of the proposed electronic measurement reference station.