• Title/Summary/Keyword: 태양광발전모듈

Search Result 298, Processing Time 0.026 seconds

On Line Monitoring and Diagnosis Technique for the Array of Photovoltaic Energy System (태양광 발전시스템 전지모듈의 온라인 감시 진단 시스템 개발)

  • Lee, Jong-Pil;Ji, Pyeong-Shik;Byun, Sang-Zoon;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.168-172
    • /
    • 2007
  • The global environment deteriorating which originated from using of fossil fuel is an serious problem for human being to solve. The photovoltaic energy has been considered as a solution. In advanced countries, research and development for photovoltaic(PV) energy system is carrying on. Once installed, a PV array requires maintenance and fault diagnosis other than an occasional cleaning. In this research, the proposed system monitor and diagnosis the output of PV array by on-line for maintenance of PV power plant. The validity of proposed system is verified using sample system.

Analysis on MPPT Scan Period for Real Life Environment (실제 날씨 환경에 대한 MPPT 주기 분석)

  • Kim, Yong-Jung;Ryu, Danbi;Na, Jaeho;Kim, Hyosung
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.294-295
    • /
    • 2017
  • 태양광발전시스템은 설비 사용률을 최대화하기 위하여 PV 모듈을 최대 전력점에서 운전하는 MPPT(Maximum Power Point Tracking) 제어가 반드시 필요하다. 기존의 MPPT 알고리즘은 경사법에 기반을 두기 때문에 일정한 MPPT 주기마다 일정한 크기의 PWM Duty 비의 자극을 주고, 그에 따른 출력 전력의 변화를 감지하여 최대 전력점을 향한 다음 운전점을 찾는다. 이러한 MPPT 알고리즘을 실제 날씨 환경에 적용할 때 최대전력을 생산하기 위한 최적의 MPPT 주기와 PWM Duty 비의 변량은 다양한 일사량의 프로파일 형태에 따라 달라진다. 그러므로 최적의 MPPT 주기와 PWM Duty 비의 변량을 결정하기 위해서는 실제 날씨 환경에서 다양한 일사량 프로파일의 패턴에 대한 분석이 필수적이다. 본 논문에서는 대한민국 중부지역의 전형적인 맑은 날씨와 흐린 날씨에서 실제 일사량을 측정, 분석하여 MPPT 목표 효율을 최대화할 수 있는 MPPT 주기를 제시하였다.

  • PDF

Efficiency Analysis of tapped-Inductor Boost Converter for Module Integrated Converter of Photovoltaic Power Conditioning System (태양광 모듈 발전 시스템용 탭인덕터 부스트 컨버터의 효율 분석)

  • Jang, Jong-Ho;Kim, Do-Hyun;Seo, Jung-Won;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.464-465
    • /
    • 2012
  • 본 논문에서는 탭 인덕터 부스트 컨버터를 제안한다. 제안하는 컨버터는 탭인덕터를 적용함으로써 권선비에 따른 시비율을 조절 할 수 있어 극단적인 승압시에도 부스트 컨버터의 도통율을 적절히 유지할 수 있다. 따라서 본 논문에서는 탭인덕터 부스트 컨버터 사용에 따른 효율 향상도를 예측할 수 있도록 손실을 분석 하였다. 제안하는 컨버터는 정상상태 연속모드(CCM)에서의 동작특성을 분석하였으며, 60W급 하드웨어 프로토 타입을 이용하여 효율을 분석하였다.

  • PDF

PWM synchronization method of parallel operating inverters with Serial-communication (직렬 통신을 이용한 병렬 운전 인버터의 PWM 동기화 알고리즘)

  • Lee, Seong-Yong;Park, Young-Min
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.41-42
    • /
    • 2016
  • 배터리 에너지 저장 시스템이나 태양광 발전 시스템은 흔히 용량 확장, 신뢰성 향상, 효율 향상 등을 목적으로 계통연계형 인버터를 다수 모듈형으로 병렬 구성하게 된다. 이렇게 DC전원을 공유하면서 인버터 출력단을 하나로 묶어 운전하는 경우에 순환전류가 문제가 될 수 있는데, 계통주파수에 해당하는 위상 차 뿐만 아니라 수 kHz의 동기화 되지 않은 PWM 캐리어 위상 차에 의해서도 순환전류가 발생할 수 있다. 따라서 본 논문에서는 PWM 동기화를 위하여, PEBB(Power Electronics Building Block) 개념을 사용하는 다수 대의 인버터가 직렬 또는 병렬로 구동될 때, 직렬 통신을 이용하여 PWM 캐리어들을 정밀하게 동기화 시키는 실용적인 방법에 대해서 제안하고자 한다.

  • PDF

Case Study on 5kWp Transparent Thin-Film BIPV System (5kW급 투광형 박막 BIPV시스템의 실증연구)

  • An, Young-Sub;Kim, Sung-Tae;Lee, Sung-Jin;Song, Jong-Hwa;Hwang, Sang-Kun;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.29-35
    • /
    • 2010
  • This study has been carried out empirical research on Transparent Thin-film BIPV modules, BIPV modules installed on the exterior of the building are applied a laminated module 1kWp, double-glazing module 3kWp and triple-glazing module 1kWp. Applied to the total capacity of BIPV modules are 5kWp. In this study, design and construction process of BIPV systems is presented. In addition, through monitoring of the BIPV system, the temperature and the power characteristics of each module were analyzed. During the measurement period, the module temperature measurement results, the maximum surface temperature of $51.5^{\circ}C$ triple-glazing BIPV module showed the highest, followed by double-glazing BIPV module $49.1^{\circ}C$, $44.7^{\circ}C$ laminated modules, respectively. Power output results, the daily average double-layer modules showed 4.10kWh/day, triple-glazing module 1.57kWh, respectively 1.81kWh laminated modules. In particular, the power efficiency of triple-glazing BIPV module was lower than the power efficiency of the laminated BIPV module. This phenomenon is considered to be affected by the module temperature. In the future, BIPV modules in this study the relationship between module temperature and power characteristics plans to identify.

Evaluation of Heat Transfer Characteristics of PV Module with Different Backsheet (백시트 종류에 따른 태양전지 모듈의 방열 특성 평가)

  • Bae, Soohyun;Oh, Wonwook;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.39-42
    • /
    • 2018
  • When the PV module is illuminated in a high temperature region, solar cells are also exposed to the high temperature external environment. The operating temperature of the solar cell inside the module is increased, which causes the power drops. Various efforts have been made to reduce the operating temperature and compensate the power of solar cells according to the outdoor temperature such as installing of a cooling system. Researches have been also reported to lower the operating temperature of solar cells by improving the heat dissipation properties of the backsheet. In this study, we conducted a test to measure the internal temperature of each module components and the external temperature when the light was irradiated according to the surrounding temperature. Backsheets with different thermal conductivities were compared in the test. Finally, in order to explain the temperature difference between the solar cell and the outside of the module, we proposed an evaluation method of the heat transfer characteristics of photovoltaic modules with different backsheet.

Non-destructive Analysis of Snail Trail on Silver Grid Line in PV Module (비파괴 분석법을 적용한 결정질 태양전지 모듈의 Snail trail 현상 연구)

  • Kim, Dajung;Kim, Namsu;Hwang, Kyung-Jun;Lee, Ju Ho;Jeong, Sinyoung;Jeong, Dae Hong
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • In recent years, discoloration defects, called as snail trail, have been observed at many crystalline photovoltaic modules after a period of time ranging from several months to several years after initial installation. It has been reported that this phenomenon doesn't impact on the performance of photovoltaic modules, but it can be detected through simple visual inspection. The origin and detailed mechanism for the formation have not been identified. In this study, non-destructive analysis by Raman spectroscopy has been carried out to investigate the origin of this phenomenon. In parallel, destructive analysis by scanning electron microscopt and transmission electron microscopy was also performed in order to confirm the results from non-destructive method. Through the extensive analysis, it was found that the main cause for discoloration is the formations of $Ag_2CO_3$ and $AgC_2H_3O_2$. Detailed mechanism for the formation of these particles was indentified through systematic studies.

PV module manufacture for application of Building Integrated photovoltaic system (건물일체형 태양광발전시스템(BIPV) 적용을 위한 태양전지모듈 제조)

  • Kang Gi-Hwan;Yu Gwon-Jong;Han Deuk-Young;An Hyung-Geun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1465-1467
    • /
    • 2004
  • In this paper, deduced manufacturing condition of glass/glass curtain wall module and metal curtain wall module. From the results. lamination condition of glass/glass curtain wall module deduced optimum in pumping $time-120^{\circ}C$ 23min, slow $press-120^{\circ}C$. 300mmHg. 3min. standard $press-120^{\circ}C$. 200mmHg. 0.5min. fast $press-120^{\circ}C$. 100mmHg. 0.3min and $curing-140^{\circ}C$, 6min, and lamination condition of metal curtain wall module deduced optimum in pumping $time-120^{\circ}C$. 8min, slow $press-120^{\circ}C$, 700mmHg. 0.5min, standard $press-120^{\circ}C$, 600mmHg, 0.5min. fast $press-120^{\circ}C$, 100mmHg. 1.5min and $curing-140^{\circ}C$. 6min. This time. power uniformity of glass/glass curtain wall module and metal curtain wall module showed each ${\pm}2.7\%,\;{\pm}2.12\%$.

  • PDF

Characterization of Photovoltaic Module Encapsulant According to UV Irradiation Dose (자외선 조사량에 따른 태양전지 모듈 봉지재의 특성 분석)

  • Lee, Song-Eun;Bae, Joon-Hak;Shin, Jae-Won;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.81-85
    • /
    • 2018
  • The photovoltaic modules installed in the actual field are affected by various external environments and the electrical performance output value is generally lowered compared to initial output value. The most of photovoltaic modules consists of low iron glass, encapsulant (EVA), back sheet, frame and junction box assembly based on the solar cells. In this paper, the characteristics of encapsulant which is an important constituent material of photovoltaic module were verified by maximum power determination, electro luminescence images, yellowness index measurement, and gel content measurement after ultraviolet (UV) irradiation exposure. The most commonly installed 72 cells crystalline photovoltaic modules were tested after various UV exposure of 0, 15, 30, and $60kWh/m^2$ and compared with the reference module. After UV exposure of $15kWh/m^2$, which is the current international test condition, a small amount of change was observed in yellowness index and electroluminescence, while a gell content rapidly increased. At a cumulative dose of $60kWh/m^2$, which will be a new international test condition in the near future, however, the yellowness index increased sharply and showed the greatest output power drop.

Solar Cell Design for Large Area Multi Busbar Module Power Loss Reduction (대면적 Multi busbar 모듈 전력 손실 저감을 위한 태양전지 설계)

  • Juhwi Kim;Jaehyeong Lee
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.34-37
    • /
    • 2023
  • Solar energy had become the main energy industry of renewable energy along with hydroelectric power generation. One of the technologies that contributed to the popularization of photovoltaic power and the decrease in the unit price of photovoltaic modules was the large-area solar cell. However, as the area increased, the light receiving area increased and the current value increased accordingly. Since power loss occurs when the current value was large, the number of busbar was increased to increase the current collection rate, and a technology to lower the current value through half-cutting was developed. The bus bar of the solar cell served as a passage through which the generated current was transmitted. This was because when the number of busbar decreases, the moving distance of electrons increased, so the amount of power generation decreases and when it increases, shadows occured. An important aspect of the electrode design was the optimal balance of these busbars and number of fingers. Therefore, in this study, the characteristics of the solar cell according to the number of front bus bars of the large-area solar cell were simulated using Griddler 2,5 pro. After selecting the number of busbar with the best characteristics, the difference was compared by varying the number of fingers and a better direction for the number of cutting was presented.