• 제목/요약/키워드: 태그 추천

검색결과 83건 처리시간 0.021초

소셜 미디어 상에서 개인화된 여행 경로 추천 기법 (Personalized Travel Path Recommendation Scheme on Social Media)

  • ;임종태;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제19권2호
    • /
    • pp.284-295
    • /
    • 2019
  • 소셜 미디어 환경에서 여행과 커뮤니티에서 기고한 사진과 관련된 메타 데이터 (태그, 지리적 위치 및 찍은 날짜)에 기반한 개인화 된 여행 경로 추천 기법이 연구되고 있다. 사용자는 소설 미디어를 사용하고 자신의 위치 기록을 여행 경로의 형태로 기록한다. 이러한 여행 경로 정보는 미래의 여행자들에게 새로운 추천 정보를 제공하기 위한 유용한 정보로 활용 될 수 있다. 본 논문에서는 라이프 로그를 기반으로 한 개인화 된 여행 경로 추천 기법을 제안한다. 제안하는 기법은 여행자 및 지역 사회가 제공한 라이프 로그 및 사진 정보를 활용하여 사용자에게 개인화된 추천 서비스를 제공할 수 있을 뿐만 아니라 개별 관심 장소가 아닌 대중적인 여행 경로도 추천 할 수 있다 (POI). 제안하는 개인화된 여행 경로 추천 기법은 POI 가지치기 단계와 여행 경로 생성 단계로 구성된다. POI 가지치기 단계에서는 POI 전체 데이터로부터 사용자에게 추천할 경로를 생성하는데 필요한 POI만을 남기고 가치기를 수행한다. 여행 경로 생성 단계에서는 POI 가지치기 단계를 통해 도출된 POI 사용자 관심도, 비용, 시간, 이벤트 등을 고려하여 후보 경로를 생성한다.

효과적인 추천 시스템을 위한 협업적 태그 기반의 여과 기법 (Collaborative Tag-based Filtering for Recommender Systems)

  • 연철;지애띠;김흥남;조근식
    • 지능정보연구
    • /
    • 제14권2호
    • /
    • pp.157-177
    • /
    • 2008
  • 최근 웹 2.0의 영향으로 태깅을 지원하는 인터넷 서비스들이 많아졌다. 태깅의 원래 목적은 컨텐츠를 분류하고 재검색을 용이하게 하는 것이지만, 컨텐츠에 태깅되어 있는 태그들을 분석하여 컨텐츠의 특성을 파악할 수 있다. 본 논문에서는 내용 파악이 힘든 컨텐츠들이 증가함에 따라 이러한 컨텐츠들의 효과적인 추천을 위해, 여러 사용자들에 의해 협업적으로 태깅된 정보를 이용한 여과 기법을 제시한다. 제안하는 방법은 사용자가 태깅한 정보들을 바탕으로 사용자의 관심을 파악하는 부분과 파악된 관심에 맞는 컨텐츠를 선별하는 부분으로 나뉘어진다. 사용자의 관심을 파악하는 부분은 사용자가 태깅한 정보들을 협업적 여과를 이용하고, 컨텐츠 선별은 확률적인 방법인 나이브 베이지안 분류자를 이용한다. 이를 통해 협업적 여과 방법의 문제점인 희박성 문제(sparsity problem)와 초기 사용자 문제(cold-start user probleam) 대해 기존의 방법들과 비교하여 그 효과를 보인다.

  • PDF

소셜 네트워크 서비스에서 온톨로지를 이용한 지능형 음악 챠트의 설계 (Design of Intelligent Music Chart using Ontology in Social Network Service)

  • 김도형;손종수;정인정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.333-336
    • /
    • 2011
  • 최근 전 세계적으로 소셜 네트워크 서비스의 사용자가 많이 증가하면서 많은 사람들이 소셜 네트워크 서비스를 이용하고 있다. 그리고 소셜 네트워크 서비스를 사용하는 사용자들은 이를 이용하여 많은 정보를 공유하고 있다. 본 논문에서는 소셜 네트워크 서비스 사용자들이 공유하는 정보 중 음악과 관련된 정보와 개방형 API 를 이용하여 MP3 파일의 메타데이터인 ID3 태그 정보를 검색한다. 검색된 결과와 소셜 네트워크 서비스 사용자 정보를 이용하여 ID3 태그 온톨로지를 생성하고 생성된 온톨로지와 온톨로지 추론기를 사용하여 음악과 관련된 다양한 순위 분석 결과와 음악 및 사용자 추천 서비스를 사용자들에게 제공하기 위한 시스템의 설계를 보인다. 본 논문에서 제안한 시스템은 소셜 네트워크 서비스에 실시간으로 등록되는 글을 이용하기 때문에 최근 음악 트렌드를 쉽게 반영한다. 또한 순위 분석을 위해 수동적으로 자료를 수집하는데 들어가는 시간적 비용을 줄여준다. 그리고 제안한 시스템을 사용하여 제공된 정보는 음악 관련 산업에서 마케팅과 사업 전략자료 등 다양한 형태로 활용이 가능하다.

사용자 기기에서 이용한 웹 데이터 분석을 통한 사용자 취향 분석 방법 (An Analysis Method of User Preference by using Web Usage Data in User Device)

  • 이승화;최형기;이은석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권3호
    • /
    • pp.189-199
    • /
    • 2009
  • 최근 인터넷 상에 정보가 방대해지면서 사용자의 요구에 맞는 정보 필터링과 개인화 서비스가 매우 중요해지고 있다. 특히 전자상거래 분야에서 상거래를 활성화시키고 정보 제공자에 대한 만족도와 충성도를 높이기 위해, 사용자의 취향을 기반으로 한 정보 추천은 필수적인 요소가 되었다. 기존 추천 시스템은 사용자의 관심 정보를 기술한 사용자 프로파일을 대부분 정보 제공자 측에서 각각 개별적으로 수집하고 이를 기초로 추천 서비스를 제공한다. 따라서 사용자의 정보는 각 정보 제공자 측에 분산되어 존재하며, 사용자 정보가 부족한 서버에서는 초기에 추천 전략을 세우기 어렵다는 문제가 있다. 또한 사용자정보를 가지고 있는 서버의 경우에도 사용자가 해당 서버를 주기적으로 방문하지 않았다면, 사용자의 동적인 취향 변화를 반영하기 어렵다. 따라서 본 논문에서는 사용자의 행동을 통합적이고, 지속적으로 관찰할 수 있는 사용자 기기에서, 사용자가 이용한 웹 문서 분석을 통해 사용자의 관심 분야를 추론하고, 이를 다른 정보 제공자가 이용하는 새로운 구조의 추천 시스템을 제안한다. 또한 제안 시스템은 보다 효율적인 프로파일 생성을 위해, 웹 페이지에서 식별된 정보 블록에서 관심 단어를 추출하고, 앵커 태그를 분석하여 사용자의 이동 경로를 추적하는 특징을 포함하고 있다. 이러한 제안 시스템의 특징을 통해, 사용자 정보가 부족한 상점에서도 초기에 개인화 서비스 제공이 가능해지며, 사용자가 평소에 이용하는 웹 문서로부터 프로파일을 생성함으로써, 사용자의 동적인 취향 변화를 반영할 수 있다. 또한 정보 블록에서 취향 정보를 추출하는 알고리즘을 통해 보다 빠르고 정확한 프로파일 생성이 가능해진다. 본 논문에서는 최근 구매 활동이 있었던 사용자들의 웹 검색 히스토리와 구매 데이터를 이용하여 제안 시스템의 추천 정확도와 프로파일 분석에 소요되는 시간 측면의 이득을 실험하였으며, 그 결과를 통해 시스템의 유효성을 확인하였다.

데이터 마이닝과 집단 지성 기법을 활용한 소셜 콘텐츠 추천 방법에 대한 연구 (A Study on Social Contents-Recommendation method using Data Mining and Collective Intelligence)

  • 강대현;박한샘;이정민;권경락;정인정
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.1050-1053
    • /
    • 2014
  • 웹 기반 서비스의 발전과 스마트 기기의 보급으로 사용자들은 다양한 웹 서비스들을 이용할 수 있게 되었고, 소셜 웹과 같은 사람들 간의 관계를 형성함으로써 정보를 주고받는 서비스에 접근하여 자신만의 콘텐츠를 생성, 공유하기가 용이해졌다. 그러나 소셜 웹 사용자들이 증가하고 지식의 양이 늘어남에 따라, 방대한 양의 지식들 중 필요한 정보만을 효율적으로 창출해내고자 하는 연구 또한 시도되어 왔다. 그러나, 기존의 방법은 다수의 서비스 사용자들의 공통적인 관심사가 반영된 결과를 도출해내기에는 부족하다는 단점이 있었다. 그리하여, 본 논문에서는 집단 지성 알고리즘과 의사 결정 나무를 활용하여 소셜 웹을 이용하는 사용자들의 태그와 URL 정보를 토대로 트렌드를 분석, 콘텐츠를 추천하는 방법을 제안하고, 이를 통하여 다수 사용자들의 기호가 반영된 다양한 정보들을 소셜 웹 사용자들에게 제공해줄 수 있음을 보인다.

RFID 기반 이력추적 시스템을 이용한 농축산물 추천방법 (Agricultural and Stockbreeding Products Recommender System Using RFID Based Traceability System)

  • 김재경;김혜경
    • 지능정보연구
    • /
    • 제14권2호
    • /
    • pp.207-222
    • /
    • 2008
  • 농축수산물의 안전성에 대한 문제가 속출하면서 농축산물에 대한 이력추적시스템 도입과 실효성 있는 서비스 방안에 대한 개발 필요성이 대두되고 있다. 특히, 농축산물의 온라인 유통 확대에 따라 소비자에게 용이한 정보탐색 기회를 제공하는 동시에 상품에 대한 안전성 문제를 해결할 수 있는 새로운 개인화 방법개발 및 시스템 도입이 요구되고 있다. 본 연구에서는 RFID 태그 기반의 이력추적시스템으로부터 획득되는 객관적 데이터를 분석하여 상품의 품질 상태를 판단하고 해당 정보를 가장 성공적인 추천방법으로 알려진 협업필터링에 이용할 수 있는 방법인 PDCF-ASP를 개발하였다. 농축산물 이력정보를 이용한 협업필터링 시스템은 소비자에게 개인화된 추천 상품정보를 제공함으로써 보다 편리한 쇼핑경험을 가능하게 하는 동시에 농축산물 생산 유통 판매의 안전성에 기여할 것이다.

  • PDF

특허의 기술이전 활성화를 위한 소셜 태깅기반 지적재산권 추천플랫폼 (Social Tagging-based Recommendation Platform for Patented Technology Transfer)

  • 박윤주
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.53-77
    • /
    • 2015
  • 국내에서 출원되는 특허건수는 매년 증가하고 있으나, 이러한 특허들 중 상당수는 활용되지 못하고 사장되고 있다. 2012년 국정감사 자료에 따르면, 우리나라 대학 및 공공연구기관이 보유한 특허의 약 73%가 사회적 가치창출로 연결되지 못하는 휴면특허라고 한다. 즉, 대학/연구소 또는 사업화가 어려운 개인이 소유하고 있는 특허가, 이를 필요로 하는 수요기업에 성공적으로 기술 이전되지 못하는 것을 휴면특허 증가의 주요 문제점으로 생각할 수 있다. 본 연구는 급격히 축적되는 방대한 특허 자원들 속에서, 기업의 관심분야에 적합한 지식재산을, 보다 쉽고, 효과적으로 선별할 수 있도록 하는 소셜태깅 기반의 특허 추천플랫폼을 제안한다. 제안된 시스템은 기존 특허들로부터 핵심적인 내용 및 기술 분야를 추출하여 초기 추천을 수행하고, 이후 사용자들의 태그정보가 축적되면, 사회적 지식 (social knowledge)을 추천에 함께 반영하게 된다. 이러한 연구에는 특허청에서 운영하고 있는 KIPRIS(Korea Industrial Property Rights Information Service) 시스템에서 실제 특허자료 총 1638건을 수집한 후, 현재 특허 데이터에는 존재하지 않는 가상의 태그 정보를 추가한 반가상(semi-virtual) 데이터를 구성하여 활용하였다. 제안된 시스템은 프로그래밍 언어 JAVA를 활용하여 핵심 알고리즘을 구현하였으며, 그래픽사용자 인터페이스(Graphic User Interface)에 대한 프로토타입의 설계를 수행하였다. 또한, 시나리오테스트 방식으로 시스템의 운영타당성 및 추천 효과성을 확인하였다.

멀티 모달 음악 무드 분류 기법 (Multi-Modal Scheme for Music Mood Classification)

  • 최홍구;전상훈;황인준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.259-262
    • /
    • 2011
  • 최근 들어 소리의 세기나 하모니, 템포, 리듬 등의 다양한 음악 신호 특성을 기반으로 한 음악 무드 분류에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 음악 무드 분류의 정확도를 높이기 위하여 음악 신호 특성과 더불어 노래 가사와 소셜 네트워크 상에서의 사용자 평가 등을 함께 고려하는 멀티 모달 음악 무드 분류 기법을 제안한다. 이를 위해, 우선 음악 신호 특성에 대해 퍼지 추론 기반의 음악 무드 추출 기법을 적용하여 다수의 가능한 음악 무드를 추출한다. 다음으로 음악 가사에 대해 TF-IDF 기법을 적용하여 대표 감정 키워드를 추출하고 학습시킨 가사 무드 분류기를 사용하여 가사 음악 무드를 추출한다. 마지막으로 소셜 네트워크 상에서의 사용자 태그 등 사용자 피드백을 통한 음악 무드를 추출한다. 특정 음악에 대해 이러한 다양한 경로를 통한 음악 무드를 교차 분석하여 최종적으로 음악 무드를 결정한다. 음악 분류를 기반한 자동 음악 추천을 수행하는 사용자 만족도 평가 실험을 통해서 제안하는 기법의 효율성을 검증한다.

유비쿼터스 기반 쇼핑동선 분석을 이용한 고객상품 추천 시스템 (Ubiqutors based Customized Goods Recommendation System using Shopping Moving Line Analysis)

  • 이종희
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 1부
    • /
    • pp.296-298
    • /
    • 2010
  • 본 논문은 유비쿼터스 핵심기술인 RFID(Radio Frequency IDentification)를 이용하여 대형마트와 같은 오프라인 쇼핑몰에서 고객의 실시간 위치 파악과 쇼핑 동선을 분석하여 고객의 선호상품을 예측하여 적시에 효율적으로 선호 상품 정보를 서비스 할 수 있는 쇼핑동선 분석 시스템을 제안한다. 제안하는 시스템은 RFID 태그가 부착된 쇼핑카트를 이용하여 개별 고객들의 쇼핑 동선 및 쇼핑 패턴을 지속적으로 학습하여 이를 기반으로 각 고객들의 쇼핑패턴을 분석하고 분석된 쇼핑패턴 정보로 이용하여 선호 구역 및 선호 상품을 예측한다. 예측된 선호상품 정보는 고객의 휴대 단말기를 통해 실시간으로 전송된다

  • PDF

과학기술정보 개인화 서비스 설계 및 구현 (A Study on Design and Implement of S&T Information Personalization Service)

  • 한희준;최성필
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.206-207
    • /
    • 2018
  • 방대한 정보를 사용자에게 제공하기 위해 검색 엔진은 다양한 알고리즘을 통해 사용자마다의 최적화된 정보를 구성한다. 과제, 논문, 특허, 연구보고서 등 과학기술정보를 서비스 하는 주체 역시 나름의 검색 알고리즘으로 정보를 제공하지만, 질의어와 문서간의 적합도만을 측정하여 검색 결과를 제시할 뿐 사용자의 관심 분야나 요구를 반영하지 않고 있다. 특히 관심 분야에 적합한 과학기술정보를 사용자가 접근하기 쉽게 제공하는 것은 매우 중요하다. 본 논문에서는 사용자 관심분야를 서비스 이용행태로부터 결정하여 이를 과학기술정보 개인화에 반영하는 서비스에 대해 제안하였다. 이를 위해 실시간 관심분야 추적, 관심 태그 클라우드 제공, 관심분야 기반 추천정보 제공, 검색 결과 개인화 네 가지 기능으로 구성된 과학기술정보 개인화 서비스를 설계하고 구현하였다.