• Title/Summary/Keyword: 태그 랭킹

Search Result 11, Processing Time 0.032 seconds

Tag Ranking System based on Semantic Similarity of Tag-pair (태그쌍의 의미유사도 기반 태그 랭킹 시스템)

  • Lee, Si-Hwa;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1305-1314
    • /
    • 2013
  • The existing tag based system deducts a retrieval result with low accuracy through the usage of a single tag matching by using tags tagged in contents. And the system doesn't provide effectively contents related information which the tags have, as the users place tags on contents without considering the priority and associative relation between tags. For a solve of above problems, this paper suggests a tag ranking system which extracts semantic similarity between tags and re-ranks the tags tagged in contents. In order to evaluate the performance of suggested system, this paper experiments and compares the ranking result of this paper's tag ranking system with the result of baseline method using tags tagged in images and frequency method adapting tag co-appearance frequency.

An Efficient Technique for Image Tag Ranking using Semantic Relationship between Tags (태그간 의미관계를 이용한 효율적인 이미지 태그 랭킹 기법)

  • Hong, Hyun-Ki;Heu, Jee-Uk;Jeong, Jin-Woo;Lee, Dong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.31-36
    • /
    • 2010
  • 최근 대두되고 있는 웹2.0의 특징은 일반 사용자들이 능동적으로 정보를 생산해내고 공유하는데 있다. 웹 2.0의 참여형 아키텍쳐를 구성하는 핵심요소로 인식되고 있는 폭소노미(Folksonomy)는 과거 택소노미(Taxonomy)와 같이 전문가에 의하여 구축되는 분류 체계가 아닌 사용자들이 협동적으로 태그(Tag)들을 만들고 관리하는 소셜 태깅(Social Tagging)에 의한 분류 시스템이다. 최근 이러한 폭소노미를 활용하여 이미지를 공유하고 검색하고자 하는 다양한 시도들이 진행되고 있다. 그러나 Flickr와 같은 태그 기반 이미지 공유 시스템에서는 태그의 문법적, 의미적 모호성과 이미지에 대한 태그들의 중요성 또는 상관관계를 고려하지 않아 태그 기반 검색 시 정확성 및 신뢰성을 보장할 수 없다. 이러한 문제를 해결하기 위해 폭소노미에 기반한 이미지 공유 데이터베이스에서 적합한 태그들을 태그 전달(Tag Propagation)하거나 확률 및 출현빈도에 기반하여 태그 랭킹을 수행하기 위한 연구들이 활발히 진행되고 있지만 여전히 만족할만한 성능을 보이지 못하고 있다. 본 논문에서는 이미지 공유 데이터베이스에서 유사한 이미지들로부터 이미지에 보다 적합한 태그들을 부여하기 위해서, WordNet을 활용하여 태그들 간의 의미관계에 기반한 효율적인 태그 랭킹 기법을 제안한다. 또한, 신뢰성 있는 태그 기반 검색을 위하여 제안한 태그 랭킹 기법이 현재 이미지 공유 시스템의 랭킹 결과보다 정확성을 높일 수 있음을 실험 예제를 통하여 확인하였다.

  • PDF

블로그 검색을 위한 태그 기반 피드 포스트 랭킹 알고리즘

  • Han, Seung-Gyun;Lee, Sang-Jin;Park, Jong-Heon
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.623-628
    • /
    • 2007
  • 본 논문은 Web 2.0시대의 새로운 컨텐츠 매체로 각광받고 있는 블로그와 관련하여 태그 기반의 검색 알고리즘을 제안하고자 한다. 최근 블로그 검색과 관련하여 태그 기반의 블로그 검색 서비스가 등장하기 시작했지만, 현재 제공되는 태그 기반의 검색 서비스는 태그의 유무와 컨텐트의 최신성을 주요 기준으로 삼고, 태그와 컨텐트 간의 관련성을 제대로 고려하지 않아 검색 결과가 만존스럽지 못하는 경우가 많다. 따라서 본 논문에서는 태그와 컨텐트와의 관련성을 실수화하고 이를 주요 기준으로 검색 결과의 순위를 결정하는 PTRank 알고리즘을 제안하였다. PTRank 알고리즘에서는 1) 태그가 피드의 제목에 포함되었는지 여부, 2) 태그가 피드의 설명에 나타나는 회수, 3) 태그가 아이템의 제목에 포함되었는지 여부, 4) 태그가 아이템의 설명에 나타나는 횟수, 5) 피드 내에서 태그의 IDF값, 6) 사용자의 검색 행위를 이용해 태그와 컨텐트간의 관련성을 실수화하였다. 실험 결과, PTRank 모델 및 학습 알고리즘이 태그 기반의 피드 검색에서 잘 작동하며 검색에 효과적으로 활용될 수 있다는 것을 알 수 있었다.

  • PDF

A Web Contents Ranking Algorithm using Bookmarks and Tag Information on Social Bookmarking System (소셜 북마킹 시스템에서의 북마크와 태그 정보를 활용한 웹 콘텐츠 랭킹 알고리즘)

  • Park, Su-Jin;Lee, Si-Hwa;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1245-1255
    • /
    • 2010
  • In current Web 2.0 environment, one of the most core technology is social bookmarking which users put tags and bookmarks to their interesting Web pages. The main purpose of social bookmarking is an effective information service by use of retrieval, grouping and share based on user's bookmark information and tagging result of their interesting Web pages. But, current social bookmarking system uses the number of bookmarks and tag information separately in information retrieval, where the number of bookmarks stand for user's degree of interest on Web contents, information retrieval, and classification serve the purpose of tag information. Because of above reason, social bookmarking system does not utilize effectively the bookmark information and tagging result. This paper proposes a Web contents ranking algorithm combining bookmarks and tag information, based on preceding research on associative tag extraction by tag clustering. Moreover, we conduct a performance evaluation comparing with existing retrieval methodology for efficiency analysis of our proposed algorithm. As the result, social bookmarking system utilizing bookmark with tag, key point of our research, deduces a effective retrieval results compare with existing systems.

A Web Contents Ranking System using Related Tag & Similar User Weight (연관 태그 및 유사 사용자 가중치를 이용한 웹 콘텐츠 랭킹 시스템)

  • Park, Su-Jin;Lee, Si-Hwa;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.567-576
    • /
    • 2011
  • In current Web 2.0 environment, one of the most core technology is social bookmarking which users put tags and bookmarks to their interesting Web pages. The main purpose of social bookmarking is an effective information service by use of retrieval, grouping and share based on user's bookmark information and tagging result of their interesting Web pages. But, current social bookmarking system uses the number of bookmarks and tag information separately in information retrieval, where the number of bookmarks stand for user's degree of interest on Web contents, information retrieval, and classification serve the purpose of tag information. Because of above reason, social bookmarking system does not utilize effectively the bookmark information and tagging result. This paper proposes a Web contents ranking algorithm combining bookmarks and tag information, based on preceding research on associative tag extraction by tag clustering. Moreover, we conduct a performance evaluation comparing with existing retrieval methodology for efficiency analysis of our proposed algorithm. As the result, social bookmarking system utilizing bookmark with tag, key point of our research, deduces a effective retrieval results compare with existing systems.

An Efficient Technique for Tag-based Image Search using Semantic Relationship between Tags (태그간 의미관계를 이용한 효율적인 태그 기반 이미지 검색 기법)

  • Hong, Hyun-Ki;Jeong, Jin-Woo;Lee, Dong-Ho
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.122-125
    • /
    • 2010
  • 최근, 소셜 미디어 공유 시스템의 사용자-참여형 아키텍쳐를 구성하는 핵심요소인 폭소노미에 기반하여 이미지를 공유하고 검색하고자 하는 다양한 시도들이 진행되고 있다. 그러나 폭소노미에 기반한 현재의 이미지 공유 시스템에서는 태그의 문법적, 의미적 모호성과 이미지에 대한 태그들의 중요성 또는 상관관계를 고려하지 않아 태그 기반 이미지 검색시 정확성 및 신뢰성을 보장할 수 없다. 이러한 문제를 해결하기 위해, 본 논문에서는 태그간 의미관계를 이용한 이미지 태그 랭킹 기법을 활용하여 태그들을 이미지와의 관련정도에 따라 정렬하여 할당한 후, 이미지의 태그 순위를 고려하여 이미지와 질의어와의 관련성에 따라 효율적으로 이미지를 검색하기 위한 기법을 제안한다. 또한, 제안한 기법이 기존의 이미지 공유 시스템의 검색 결과보다 정확성을 높일 수 있음을 실험 예제를 통하여 확인하였다.

Automatic Tagging and Tag Recommendation Techniques Using Tag Ontology (태그 온톨로지를 이용한 자동 태깅 및 태그 추천 기법)

  • Kim, Jae-Seung;Mun, Hyeon-Jeong;Woo, Tae-Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.167-179
    • /
    • 2009
  • This paper introduces techniques to recommend standardized tags using tag ontology. Tag recommendation consists of TWCIDF and TWCITC; the former technique automatically tags a large quantity of already existing document groups, and the latter recommends tagging for new documents. Tag groups are created through several processes, including preprocessing, standardization using tag ontology, automatic tagging and defining ranks for recommendation. In the preprocessing process, in order to search semantic compound nouns, words are combined to establish basic word groups. In the standardization process, typographical errors and similar words are processed. As a result of experiments conducted on the basis of techniques presented in this paper, it is proved that real-time automatic tagging and tag recommendation is possible while guaranteeing the accuracy of tag recommendation.

  • PDF

Lost and Found Registration and Inquiry Management System for User-dependent Interface using Automatic Image Classification and Ranking System based on Deep Learning (딥 러닝 기반 이미지 자동 분류 및 랭킹 시스템을 이용한 사용자 편의 중심의 유실물 등록 및 조회 관리 시스템)

  • Jeong, Hamin;Yoo, Hyunsoo;You, Taewoo;Kim, Yunuk;Ahn, Yonghak
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.19-25
    • /
    • 2018
  • In this paper, we propose an user-centered integrated lost-goods management system through a ranking system based on weight and a hierarchical image classification system based on Deep Learning. The proposed system consists of a hierarchical image classification system that automatically classifies images through deep learning, and a ranking system modules that listing the registered lost property information on the system in order of weight for the convenience of the query process.In the process of registration, various information such as category classification, brand, and related tags are automatically recognized by only one photograph, thereby minimizing the hassle of users in the registration process. And through the ranking systems, it has increased the efficiency of searching for lost items by exposing users frequently visited lost items on top. As a result of the experiment, the proposed system allows users to use the system easily and conveniently.

  • PDF

A Continuous Information Retrieval System Based-on Tag for Specialized Data (특화된 정보에 대한 Tag 기반 연속정보검색 시스템)

  • Lee, Ki-Eun;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1474-1477
    • /
    • 2011
  • 정보화 사회에 접어 들면서 정보를 판별하는 능력이 중요시 되고 있다. 그러나 정보가 점점 이질적이고 방대해 짐에 따라 사용자의 의도와 목적에 맞는 정보를 빠르고 정확하게 찾아내는 것이 어렵다. 정보검색 서비스를 제공하는 국내외 포털 사이트에서는 랭크 알고리즘을 이용하여 사용자에게 정보를 제공한다. 그러나 사용자의 요구를 충족시키기 위해 랭킹보다 더 중요한 것 정보를 압축시켜 사용자에게 사용자가 원하는 정보만 제공하는 것이다. 따라서 본 논문에서는 도메인을 제한하여 특화된 정보를 제공하며 사용자 위주의 더 특화된 정보를 제공하는 친구추가 기능을 제안한다. 동시에 주 검색 기능으로 사용자가 등록한 태그 링크를 따라 클릭하면서 연속적으로 정보 검색을 할 수 있는 연속정보검색을 제안한다. 그리고 제안한 시스템을 실제 웹 사이트를 구현을 통해 나타낸다. 제안한 시스템은 사용자에게 효율적으로 유용한 정보를 제공하는 기대효과가 있다.

The Effective Blog Search Algorithm based on the Structural Features in the Blogspace (블로그의 구조적 특성을 고려한 효율적인 블로그 검색 알고리즘)

  • Kim, Jung-Hoon;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.7
    • /
    • pp.580-589
    • /
    • 2009
  • Today, most web pages are being created in the blogspace or evolving into the blogspace. A blog entry (blog page) includes non-traditional features of Web pages, such as trackback links, bloggers' authority, tags, and comments. Thus, the traditional rank algorithms are not proper to evaluate blog entries because those algorithms do not consider the blog specific features. In this paper, a new algorithm called "Blog-Rank" is proposed. This algorithm ranks blog entries by calculating bloggers' reputation scores, trackback scores, and comment scores based on the features of the blog entries. This algorithm is also applied to searching for information related to the users' queries in the blogspace. The experiment shows that it finds the much more relevant information than the traditional ranking algorithms.