• Title/Summary/Keyword: 탑재 비행 시험

Search Result 169, Processing Time 0.028 seconds

Modified WLS Autofocus Algorithm for a Spotlight Mode SAR Image Formation (스포트라이트 모드 SAR 영상 형성에서의 수정된 가중치 최소 자승기법에 의한 자동 초점 알고리즘)

  • Hwang, Jeonghun;Shin, Hyun-Ik;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.894-901
    • /
    • 2017
  • In the existence of motion, azimuth phase error due to accuracy limitation of GPS/IMU and system delay is unavoidable and it is essential to apply autofocus to estimate and compensate the azimuth phase error. In this paper, autofocus algorithm using MWLS(Modified WLS) is proposed. It shows the robust performance compared with original WLS using new target selection/sorting metric and iterative azimuth phase estimation technique. SAR raw data obtained in a captive flight test is used to validate the performance of the proposed algorithm.

Integrated System of Multiple Real-Time Mission Software for Small Unmanned Aerial Vehicles (소형 무인 항공기를 위한 다중 실시간 미션 소프트웨어 통합 시스템)

  • Jo, Hyun-Chul;Park, Keunyoung;Jeon, Dongwoon;Jin, Hyun-Wook;Kim, Doo-Hyun
    • Telecommunications review
    • /
    • v.24 no.4
    • /
    • pp.468-480
    • /
    • 2014
  • The current-generation avionics systems are based on a federated architecture, where an electronic device runs a single software module or application that collaborates with other devices through a network. This architecture makes the internal system architecture very complicate, and gives rise to issues of Size, Weight, and Power (SWaP). In this paper, we show that the partitioning defined by ARINC 653 can efficiently deal with the SWaP issues on small unmanned aerial vehicles, where the SWaP issues are extremely severe. We especially install the integrated mission system on real hexacopter and quadcopter and perform successful flight tests. The presented software technology for integrated mission system and software consolidation methodology can provide a valuable reference for other SWaP sensitive real-time systems.

The quality improvement study on the crack of heat exchanger lubricating oil port in military aircraft (군용항공기 열교환기 윤활유 유입포트 균열개선 연구)

  • Park, Sung-Jae;Choi, Jae-Ho;Choi, Gil-Gyu;Lee, Dong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.164-172
    • /
    • 2020
  • The fuel oil/heat exchanger installed in military aircraft is a device that cools the lubricant oil supplied to other devices, such as an AMAD, and a hydraulic pump using the low temperature of the fuel is cracked at the AMAD lubricant inlet port. If a crack in the heat exchanger occurs, the lubricant oil supplied to other equipment is not cooled. Therefore, the flight can no longer be performed. In this study, non-destructive inspection and microscopic examination of the fracture surface of the oil port were performed to analyze the crack tendency. The oil pipe connected to the oil port is a titanium pipe, which is fastened with over torque and has been identified as the leading cause of heat exchanger oil port cracks. In addition, it was verified as the main reason for cracking by finite element analysis. The material and diameter of the pipe were changed to improve this defect, and the applied torque was adjusted. In addition, the bending value of the pipe was adjusted to minimize the fatigue accumulation due to pulsating pressure. As a result, no cracks occurred on the heat exchanger via the ground test after the installation of an improved pipe under the same conditions.

Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques (드론과 이미지 분석기법을 활용한 구조물 외관점검 기술 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Rhim, Hong-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.545-557
    • /
    • 2017
  • The study is about the efficient alternative to concrete surface in the field of visual inspection technology for deteriorated infrastructure. By combining industrial drones and deep learning based image analysis techniques with traditional visual inspection and research, we tried to reduce manpowers, time requirements and costs, and to overcome the height and dome structures. On board device mounted on drones is consisting of a high resolution camera for detecting cracks of more than 0.3 mm, a lidar sensor and a embeded image processor module. It was mounted on an industrial drones, took sample images of damage from the site specimen through automatic flight navigation. In addition, the damege parts of the site specimen was used to measure not only the width and length of cracks but white rust also, and tried up compare them with the final image analysis detected results. Using the image analysis techniques, the damages of 54ea sample images were analyzed by the segmentation - feature extraction - decision making process, and extracted the analysis parameters using supervised mode of the deep learning platform. The image analysis of newly added non-supervised 60ea image samples was performed based on the extracted parameters. The result presented in 90.5 % of the damage detection rate.

Development of P.P.T CanSat System Applying Energy Harvesting System (에너지 하베스팅 시스템을 적용한 자가발전 P.P.T CanSat 시스템 개발)

  • Chae, Bong-Geon;Kim, Su-Hyeon;Kim, Hye-In;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • CanSat has being attracted considerable attentions for the use as training purposes owing to its advantage that can implement overall system functions of typical commercial satellites within a small package like a beverage can. So-called P.P.T CanSat (Power Plant Trio Can Satellite), proposed in this study, is the name of a CanSat project which have participated in 2015 domestic CanSat competition. Its main objective is to self-power on a LED and a MEMS sensor module by using electrical energy harvested from solar, wind and piezo energy harvesting systems. This study describes the system design results, payload level function tests, flight test results and lessons learned from the flight tests.

Development of Fracture-Type Protector for a Launching Reconnaissance Robot (발사형 정찰로봇을 위한 파단형 보호체 개발)

  • Kang, Bong-Soo;Cho, Yoon-Ho;Choi, Jeong-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1473-1478
    • /
    • 2012
  • This paper presents the development of a fracture-type protector for carrying a reconnaissance robot to a remote target area. Instead of a conventional unlocking mechanism, a separation method based on the fracture of assembled parts was implemented in the proposed lightweight protector in order to improve the feasibility for a real battlefield. Simulations using the finite element model of the protector and the robot were performed to verify the fracture under the given loading conditions, and shock experiments using a drop table were performed to calculate shock transmittance through the protector to the robot. Several field tests for a 100-m flight proved that the proposed scenario (launching, flying, landing, and separation) was achieved successfully.

Development of the Connection Unit with a Gas Gun Installed in a Quadcopter-type Drone (쿼드콥터형 드론에 설치된 가스총 결합유닛의 개발)

  • Jeon, Junha;Kang, Ki-Jun;Kwon, Hyun-Jin;Chang, Se-Myong;Jeong, Jae-Bok;Baek, Jae-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.774-781
    • /
    • 2018
  • In this investigation, a gas gun is proposed driven by carbon dioxide gas and installed on a quadcopter-type small unmanned drone for the purpose of cattle vaccination, and we developed a launcher and its connection unit. The system consists of a commercial drone, a gas gun, a solenoid valve, and the remote communication controller, etc. The velocity of launched projectile is measured, and the full system is finally validated through ground test and flight examination loaded for the real aircraft. The feasibility is checked if this technology is applicable to various disease abatement and hazard mitigation in the fields of agriculture and fire-fighting with the present research and development.

A Study on Architecture of Test Program based UML (UML 기반 점검 프로그램 설계 방법에 관한 연구)

  • Kim, ByoungYong;Jang, JungSu;Ban, ChangBong;Lee, HyoJong;Yang, SeungYul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.217-230
    • /
    • 2012
  • This paper propose interacting test programming methods between test equipment and hardware unit to verify function and performance of the hardware unit under test. Proposed test program can minimizes the risk of failures when the unit is mounted on the aircraft by testing and verifying the unit under the worst stress condition. Also, Object oriented design using UML make it easy to apply in other equipments. Test program consists of architecture package and hardware package. Architecture package is in a role for system management, log analysis, message receiving and message analysis. Messages that are used by system management define messages for testing and defined messages is sent and received to test equipment through Ethernet. Hardware package is in a role for hardware management that is needed to be tested and is related to a system. Hardware to be tested is divided into internal test and transmission test. Internal test inspects hardware itself and reports the test results to the test equipment. Transmission test inspects communication device by sending or receiving data. All kinds of test is done in the worst condition of the test unit executing in parallel. Each device is tested at least 482 times and at most 15,003 times about one hour. Test program is utilized in hardware reliability test like as environmental test or EMI test.

Environmental Test Results of a Flight Model of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 소형영상분광기 발사모델 환경시험 결과)

  • Lee, Sang-Jun;Kim, Jung-Hyun;Lee, Jun-Ho;Lee, Chi-Won;Jang, Tae-Sung;Kang, Kyung-In
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.184-190
    • /
    • 2011
  • A compact imaging spectrometer (COMIS) was developed for a microsatellite STSAT-3. The satellite is now rescheduled to be launched into a low sun-synchronous Earth orbit (~700 km) by the end of 2012. Its main operational goal is the imaging of the Earth's surface and atmosphere with ground sampling distance of 27 m and 2 - 15 nm spectral resolution over visible and near infrared spectrum (0.4 - 1.05 ${\mu}m$). A flight model of COMIS was developed following an engineering model that had successfully demonstrated hyperspectral imaging capability and structural rigidity. In this paper we report the environmental test results of the flight model. The mechanical stiffness of the model was confirmed by a small shift of the natural frequency i.e., < 1% over 10 gRMS random vibration test. Electrical functions of the model were also tested without showing any anomalies during and after vacuum thermal cycling test with < $10^{-5}$ torr and $-30^{\circ}C\;-\;35^{\circ}C$. The imaging capability of the model, represented by a modulation transfer function (MTF) value at the Nyquist frequency, was also kept unvaried after all those environmental tests.

Implementation of Airborne Multi-Function Radar Including Attitude Maneuvering (자세 기동을 고려한 항공기 탑재 다기능 레이다 통합 시뮬레이터 구현)

  • Ko, Jae-Youl;Park, Soon-Seo;Choi, Han-Lim;Ahn, Jae-Myung;Lee, Sung-Won;Lee, Dong-Hui;Yoon, Jung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2017
  • In this paper, a simulation test bed is presented which operates to provide full-scale simulation of airborne multi-function phased array radars. This simulation test bed provides a capability to evaluate the target tracking performance. To realize aircraft operation scenario, we developed 6DOF aircraft dynamics model which can generate trajectories and attitude of an aircraft. This procedure includes steady state flight trim search, autopilot design, and aircraft guidance command design. Also, the radar-environment integrated simulator includes target detection/measurement model and tracking filter. Developed simulator is validated by creating an air-to-air scenario.