• Title/Summary/Keyword: 탑재

Search Result 4,792, Processing Time 0.03 seconds

Development of Onboard Orbit Generation Algorithm for GEO Satellite (정지궤도 위성의 탑재 궤도 생성 알고리듬 개발)

  • Yim, Jo Ryeong;Park, Bong-Kyu;Park, Young-Woong;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.7-17
    • /
    • 2014
  • This technical paper deals with development of on-board orbit generation algorithm for GEO Satellite. This paper presents the research analysis results performed in order to improve the accuracy of the existing algorithm used for generating real-time orbit information for GEO satellite. The error impact on orbit accuracy due to the orbit error sources were analyzed with the algorithm suggested by this research. As a result of the analyses, it is found that the initial orbit should be determined with an accuracy of less than 50 m and the reference position angle error for the ground station and the satellite should be maintained within ${\pm}0.0025deg$ in order to meet the orbit accuracy specification. The development of on-board flight software based on the new algorithm was accomplished and the performance verification is ongoing by using a software based performance verification tool.

Algorithm to cope with SEUs(Single Event Upsets) on STSAT-1 OBC(On-board Computer) (과학기술위성 1호 탑재 컴퓨터(On-board Computer)에서의 SEUs(Single Event Upsets) 극복 알고리즘)

  • Chung, Sung-In;Park, Hong-Young;Lee, Heung-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.10-16
    • /
    • 2008
  • Generally, the satellite circling round in a low orbit goes through Van Allen belt connecting with the magnetic fold, in which electronic components are easily damaged and shortened by charged particles moving in a cycle between the South Pole and the North Pole. In particular, Single Event Upset(SEU) by radiation could cause electronic device on satellite to malfunction. Based on the idea mentioned above, this study considersabout SEU effect on the On-board Computer(OBC) of STSAT-1 in the space environment radiation, and shows algorithm to cope with SEUs. In this experiment, it also is shown that the repetitive memory read/write operation called memory wash is needed to prevent the accumulation of SEUs and the choice for the period of memory wash is examined. In conclusion, it is expected that this research not only contributes to understand low capacity of On-board Computer(OBC) on Low Earth Orbit satellite(LEOS) and SaTReC Technology satellite(STSAT) series, but also makes good use of each module development of Korea Multi-Purpose Satellite(COMPSAT) series.

Thermal Vacuum Test and Thermal Analysis for a Qualification Model of Cube-satellite STEP Cube Lab. (큐브위성 STEP Cube Lab.의 임무 탑재체 인증모델의 열진공시험 및 열모델 보정을 통한 궤도 열해석)

  • Kang, Soo-Jin;Ha, Heon-Woo;Han, Sung-Hyun;Seo, Joung-Ki;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.156-164
    • /
    • 2016
  • Qualification model(QM) of main payloads including concentrating photovoltaic system using fresnel lens, heating wire cutting type shockless holding and release mechanism, and MEMS-based solid propellant thruster have been developed for the STEP Cube Lab.(Cube Laboratory for Space Technology Experimental Project), which is a pico-class satellite for verification of core space technologies. In this study, we have verified structural safety and functionality of the developed payloads under a qualification temperature range through the QM thermal vacuum test. Additionally, a reliability of thermal model of the payloads has been confirmed by performing a thermal correlation based on the thermal balance test results.

Design and Implementation of the Transmit and Receive Equipments for Wide Band Signals of a Spaceborne High Resolution Synthetic Aperture Radar (위성탑재 고해상도 합성개구 레이다용 광대역 신호 송 수신장치 설계 및 제작)

  • Ka, Min-Ho;Jeon, Byung-Tae;Kim, Se-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.44-51
    • /
    • 2001
  • In general, the realization of spaceborne system is constrained by its space environment. In this paper, we suggest chirp stitching technique which generates and processes wideband radar signal with minimum hardware, design and implement transmit/receive equipments and operating programs to satisfy the requirement of this spaceborne high resolution SAR(Synthetic Aperture Radar). We apply the top down design approach to this system, and divide hardware into equipment, module and circuit levels, and software into SR(Software Requirement), AD(Architecture Design), DD(Detailed Design) and coding levels, and then extract each requirement to satisfy the wideband requirement of this spaceborne high resolution SAR. We, at first, test the hardware functions, confirm the wideband handling capability of this system with 85MHz wideband signals generated from two 42.5MHz narrow band signals, and show that this system can be used in spaceborne high resolution SARs.

  • PDF

Mechanical Stability Analysis of PCB and Component for Launch and On-orbit Environment based on Fatigue Failure Theory and FEM (피로파괴 이론과 FEM에 기초한 발사 및 궤도 환경에서의 기판 및 소자의 구조건전성 분석)

  • Jeong, Suk-Yong;Oh, Hyun-Ung;Lee, Kyung-Joo;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.952-958
    • /
    • 2011
  • On-board IR calibration device has been developed for calibration of spaceborne image sensor. It is composed of a blackbody to provide two different radiance temperatures, tilt mirror with a function of stow and deploy to view the blackbody during the calibration and on-board calibration control unit to control the function of the blackbody and tilt mirror. In this paper, to guarantee the structural safety of the unit, the structural and thermal analysis including a thermo-elastic analysis for verifying structural safety on the soldered part of chips have been performed. In addition, safety margin of the chips on the PCB obtained from the conventional analytical method has been compared to the results from the FEM analysis.

Operational Concept Design and Verification for Airborne SAR System (항공탑재 SAR 시스템 운용개념 설계 및 검증)

  • Lee, Hyon-Ik;Kim, Se-Young;Jeon, Byeong-Tae;Sung, Jin-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.588-595
    • /
    • 2013
  • Airborne SAR system is the imaging Radar system that is loaded on a manned or unmanned aircraft, which is in charge of high quality image acquisition and moving target detection. This paper describes the operational requirements for the Airborne SAR system and suggests the operational concept to satisfy the requirements. To be specific, it describes the interface with airborne system, state definition and transition, operation mode based on mission definition file, fault management, and data storing and transmission concept. Finally, it gives the ground test results to verify the SAR system operational concept.

Development of System Performance Analysis Simulator for Spaceborne Synthetic Aperture Radar (위성용 영상레이더 시스템 성능 분석 시뮬레이터 개발)

  • Won, Young-Jin;Lee, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.318-327
    • /
    • 2017
  • Synthetic Aperture Radars (SARs) that can be performed regardless of weather and day-and-night conditions have been developed for Earth remote sensing in recent decades. Korea Aerospace Research Institute (KARI) has developed and launched successfully the KOrea Multi-Purpose SATellit-5 (KOMPSAT-5) which is the first Korean SAR satellite in 2013, and is currently developing the KOMPSAT-6 which is the next generation series of the SAR satellite. This paper describes the development of the system performance analysis simulator which is necessary for spaceborne SAR payload design and analysis. The system performance analysis simulator consists of the antenna pattern generation simulator, the SAR performance analysis simulator, and the image quality analysis simulator. The simulation results of this research show that this simulator can be applicable as the design and analysis tool for the spaceborne SAR payload system during the design phase.

Virtualized System Development Based on ERC32 Processor for Satellite Simulator (위성 시뮬레이터 개발을 위한 ERC32 프로세서 기반의 가상화 시스템 개발)

  • Choi, Jong-Wook;Shin, Hyun-Kyu;Lee, Jae-Seung;Cheon, Yee-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • During the development of flight software, the processor emulator and satellite simulator are essential tools for software development and verification. SWT/KARI developed the software-based spacecraft simulator based on TSIM-ERC32 processor emulator from Aeroflex Gaisler. But when developing flight software using TSIM-ERC32, there are much limitation for understanding of exact behavior of ERC32 processor, and it is impossible to change or modify the emulator core to develop the satellite simulator. To reslove this problem, this paper presents the development of new cycle-true ERC32 emulator as laysim-erc32 and describes the software development and debugging method on VxWorks/RTEMS RTOS.

A Preliminary Performance Analysis of the Meteorological and Ocean Data Communication Subsystem in COMS (통신해양기상위성 기상해양데이터통신계의 예비 성능 해석)

  • Kim, Jung-Pyo;Yang, Gun-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.25-31
    • /
    • 2006
  • The COMS (Communication, Ocean, and Meteorological Satellite) performing meteorological and ocean monitoring and providing communication service with meteorological, ocean and Ka-band payload in the geostationary orbit includes MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station and relaying the meteorological data processed on the ground to the end-user stations. MODCS comprises of two channels: SD channel which formats the raw data according to CCSDS recommendation, amplifies and transmits its signal to the ground station; MPDR channel which relays to the end-user stations the ground-processed meteorological data in the data format of LRIT/HRIT recommended by CGMS. This paper constructs the architecture of MODCS for transmitting and relating the observed data, and investigates that the key performance parameters have the required margin through the preliminary performance analyses.

  • PDF

Thermal Design of MGSE Panel for Thermal Vacuum Test of Ka-band Engineering Qualification Model Payload of Communications and Broadcasting Satellite (통신방송위성 Ka-대역 기술인증모델 탑재체의 열진공시험을 위한 MGSE 패널 열설계)

  • Kim, Jeong Hun;Choe, Seong Bong;Yang, Gun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.96-102
    • /
    • 2003
  • The thermal design of MGSE(Mechanical Ground Support Equipment) panel is performed for thermal vacum thest of Ka-band EQM(Engineering Qualification Model) payload of communications and broadcasting satellite. The thermal environments are predicted to evaluate the performance of transponder equipments in the thermal vacum chamber. SINDA is used to verify the thermal design of the heat pipe layout. Embedded 16 heat pipes in the EQM payload developed for Ka-band trasponder equipments are designded properly. The heat fluz loaded on the external facesheet is 265W/㎡ for the hot platear function test of the traspinder equipments, and the zero heat flux for the cold plateau case. The maxium predicted heat transport capability is 2723 W-cm.