지면반사도 정보는 열평형 및 환경/기후 모니터링에 중요하다. 본 연구에서는 정지궤도위성의 Geostationary Environment Monitoring Spectrometer (GEMS) 관측에서 300-500 nm 파장 영역의 지면반사도 산출 시에 오차 유발 요소에 대한 민감도를 조사하였다. 장차 GEMS 지면반사도 산출 시에 오차 분석을 위하여 극궤도 위성의 MODerate resolution Imaging Spectroradiometer (MODIS; 공간 해상도 $1km{\times}1km$) 자료 및 Ozone Mapping Instrument (OMI; $12km{\times}24km$) 자료 그리고 복사전달모델 수치실험도 분석에 사용하였다. 본 연구에서 오차 유발 요소는 구름, 레일리 산란, 에어로졸, 오존 그리고 지면 특성이다. GEMS 저해상도($8km{\times}7km$)에서의 구름 탐지율은 MODIS 대비 약 79%이었으나, GEMS 화소의 운량이 40% 이하에서는 상대적으로 낮았다. 이러한 경향은 구름 이외의 다른 효과(에어로졸, 지면 특성)로 인하여 주로 발생하였다. RGB 영상과 복사전달모델 계산을 기초로 조사된 레일리 산란 효과는 육지에 비하여 해양 지역에서 뚜렷하였다. 지면반사도가 0.2보다 작은 경우에 위성관측 대기상단 반사도는 에어로졸 양에 비례하였으나, 0.2보다 큰 경우에는 그 반대 경향을 보였다. 또한 에어로졸 양에 의한 지면반사도 산출 오차는 자외선 영역에서 파장에 따라 급격하게 증가하였으나, 가시광선에서는 일정하거나 다소 감소하였다. 오존 흡수는 자외선 영역(328-354 nm) 중 328 nm에서 가장 크게 나타났다. 지면반사도가 0.15인 육지 경우에 음의 오존전량 아노말리(-100 DU)로 인한 지면반사도 산출 오차는 +0.1이었다. 본 연구는 GEMS 위성관측을 이용한 지면반사도 원격탐사의 정확도를 높이는데 기여할 수 있다.
인터넷 컴퓨팅 환경의 변화, 새로운 서비스 출현, 그리고 지능화되어 가는 해커들의 다양한 공격으로 인한 규칙 기반 침입탐지시스템의 한계점을 극복하기 위해 기계학습 및 딥러닝 기술을 활용한 네트워크 이상 검출(NAD: Network Anomaly Detection)에 대한 관심이 집중되고 있다. NAD를 위한 대부분의 기존 기계학습 및 딥러닝 기술은 '정상'과 '공격'으로 레이블링된 훈련용 데이터 셋을 학습하는 지도학습 방법을 사용한다. 본 논문에서는 공격의 징후가 없는 일상의 네트워크에서 수집할 수 있는 레이블링이 필요 없는 데이터 셋을 이용하는 비지도학습 오토 엔코더(AE: AutoEncoder)를 활용한 NAD 적용 가능성을 제시한다. AE 성능을 검증하기 위해 NSL-KDD 훈련 및 시험 데이터 셋을 사용해 정확도, 정밀도, 재현율, f1-점수, 그리고 ROC AUC (Receiver Operating Characteristic Area Under Curve) 값을 보인다. 특히 이들 성능지표를 대상으로 AE의 층수, 규제 강도, 그리고 디노이징 효과 등을 분석하여 레퍼런스 모델을 제시하였다. AE의 훈련 데이터 셋에 대한 재생오류 82-th 백분위수를 기준 값으로 KDDTest+와 KDDTest-21 시험 데이터 셋에 대해 90.4%와 89% f1-점수를 각각 보였다.
공간해상도 약 1 m의 고해상도 X-band SAR 위성이 이용되면서 SAR를 이용한 도심지 모니터링, 표적탐지, 건물 재구성에 관한 연구가 진행되고 있다. 본 연구에서는 고해상도 TerraSAR-X SAR 영상을 이용한 도심지 건물 재구성을 수행하였다. 도심지 건물 재구성을 위하여 1:25,000 수치지형도로부터 건물의 외곽선을 추출하였으며, 추출한 건물의 외곽선을 기반으로 SAR 영상에서 모서리반사 위치를 찾았다. KS 테스트(Kolmogorov-Smirnov Test)에 기반하여 고해상도 SAR 진폭영상의 건물 모서리반사 위치로부터 레이오버 길이를 측정하여 건물의 초기 높이를 설정하였다. 진폭영상을 이용하여 추출한 건물의 초기 높이 기준 -10 m에서 +10 m로 건물의 높이를 변화시키며 도심지에 적합한 간섭위상 시뮬레이션을 수행하여 TerraSAR-X 간섭위상과의 위상 일치성 계산을 하였다. 위상 일치의 경향성 분석을 통해 건물의 높이를 설정해 줌으로써 고해상도 SAR 영상을 이용한 도심지 건물 재구성 연구를 진행하였다. 대전지역의 아파트 단지에 적용한 결과, 진폭영상과 간섭위상을 이용하여 추정된 건물 높이는 LiDAR로부터 추출된 높이를 기준으로 약 1~2 m 정도의 RMSE (Root Mean Square Error)를 보였다. 개발된 알고리즘은 향후 TerraSAR-X와 TanDEM-X 간섭쌍 자료에 적용할 경우, 보다 도심지 모니터링에 효과적으로 이용될 수 있을 것이다.
영상분할이란 영상내의 이미지 상의 특정한 의미가 있는 영역으로 나누는 영상처리 방법을 일컫는다. 이미지 합성이나 분석을 위해서는 구분된 영역이 최대한 인간이 의미를 부여할 수 있는 물체를 나타내는 것이 바람직하나, 현재의 컴퓨터에의한 자동 영상이해 기법으로는 그 학문적 및 기술적인 한계로 인하여 영역의 분할이 수치적인 의미 이상을 가지게하기 어렵다. 따라서, 사용자가 결정적인 물체 경계의 정보를 제공하고 그에 기반하여 처리하는 HCI(Human Computer Interaction)개념을 도입하면 효과적인 결과를 얻을 수 있다. 기존의 "지능형 가위" (Intelligent Scissors)나 스네이크 (Snake) 방법 등에서도 사용자의 입력이 결과에 결정적인 역할을 하는 것을 보여준다 [1][2]. 본 논문은 기존의 방법에 비하여 미세한 영역의 경계를 추출 및 추적을 향상할 수 있는 효율적인 대화형 영상분할 기법을 제안한다. 제시된 방법은 지능형 가위의 개념에 일부 기반하나 안정된 경계선 추출을 위하여 이미 영상처리분야에서 확립된 캐니 경계 검출법(Canny Edge Detector)을 사용한다. 그리고 캐니 경계 검출법으로 잘 탐지되지 않는 경계선 부분에 대한 검출을 위하여 경계 "재봉법"(Sewing Method)을 제시하였으며, 작업 효과와 효율을 증진 시키기 위하여 인접 화소들을 검색하는 순서와 검색 대상 화소를 지정하는 5-방향 경계 추적 방법(5-Direction Edge-Following Method)을 제안하였다.
쓰레기매립장의 침출수 누출 탐지를 위한 물리탐사법은 침출수의 전기전도도를 대상으로 한 전기탐사법이 주로 적용되어 왔다. 이 연구에서는 제주도에 위치한 비위생매립지를 대상으로 전기비저항 탐사와 더불어 매립장 경계부와 토양층을 통한 침출수 누출 영역을 효율적으로 규명하기 위하여 다중주파수를 이용한 소형루프 전자탐사를 수행하였으며, 아울러 오염지역의 천부 지하수 유동 방향을 추정하기 위하여 침출수의 유동에 의해 발생될 수 있는 자연전위를 모니터링 하였다. 전기비저항 탐사 및 자연전위 모니터링 결과 매립지 주변을 통한 침출수의 누출 가능성은 거의 없는 것으로 나타났으며, 이는 주변 하천에서 정기적으로 실시한 수질 분석 결과와 일치된다. 또한 소형루프 전자탐사 자료에 대하여 공간 필터링 및 1차원 역산법을 적용한 결과 매립장 경계부의 위치 및 매립장 내부의 심도별 매립물에 의한 저비저항 이상대를 효과적으로 도출 할 수 있었다.
인터넷의 성장과 개인의 참여는 사생활 정보 보호에 관련된 비효율적 관리 방안에 대한 문제의식을 불러일으키고 있으며 이를 해결하기 위한 여러 연구들이 이루어지고 있다. 본 연구에서는 기존에 존재하는 문서 분류 방법론을 이용하여 개인의 사적 공간을 나타내는 프라이버시의 항목 중 개인을 식별할 수 있거나 개인이 민감해 할 수 있는 사생활 정보를 담고 있는 문서를 탐지 혹은 분류하는 방법에 대해서 다룬다. 논문의 실험에서 기존의 학습데이터에 추가적으로 개인정보의 유형에 관련된 하위 학습 데이터를 추가함으로써 자동 문서 분류 알고리즘의 성능 측정치를 높이는 것을 시도하였다. 또한 개인정보의 유형에 따라 알고리즘에 효과적으로 적용하는 방향을 제시하기 위하여 기존 논문에서 나타난 개인정보의 유형들을 분석하였다. 개인정보 관련 문서로 분류된 학습 대상과 함께 개인정보에 영향력이 있는 개인정보 유형들을 추가 학습시켜 알고리즘이 학습하는 문서 자질(feature)의 질(quality)을 높였다. 높아진 학습 자질의 질로 인하여 기존의 Na$\ddot{i}$ve Bayes 방법론을 이용한 평가 측정치가 높아질 수 있었다.
이분형 자료의 분류에서 자료의 불균형 정도가 심한 경우 분류 결과가 좋지 않을 수 있다. 이런 문제 해결을 위해 학습 자료를 변형시키는 등의 연구가 활발히 진행되고 있다. 본 연구에서는 이러한 이분형 자료의 분류문제에서 불균형을 다루기 위한 방법들 중 표본재추출 방법들을 비교하였다. 이를 통해 자료에서 희소계급의 탐지를 보다 효과적으로 하는 방법을 찾고자 하였다. 모의실험을 통하여 여러 오버샘플링, 언더샘플링, 오버샘플링과 언더샘플링 혼합방법의 총 20가지를 비교하였다. 분류문제에서 대표적으로 쓰이는 로지스틱 회귀분석, support vector machine, 랜덤포레스트 모형을 분류기로 사용하였다. 모의실험 결과, 정확도가 0.5 이상이면서 민감도가 높았던 표본재추출 방법은 random under sampling (RUS)였다. 그 다음으로 민감도가 높았던 방법은 오버샘플링 ADASYN (adaptive synthetic sampling approach)이었다. 이를 통해 RUS 방법이 희소계급값을 찾기 위한 방안으로는 적합했다는 것을 알 수 있었다. 몇 가지 실제 자료에 적용한 결과도 모의실험의 결과와 비슷한 양상을 보였다.
센서 기술과 컴퓨팅 성능의 향상으로 인한 데이터의 폭증은 산업 현장의 상황을 분석하기 위한 토대가 되었으며, 이와 같은 데이터를 기반으로 현장에서 발생하는 다양한 이벤트를 탐지 및 분류하려는 시도들이 최근 증가하고 있다. 특히 음향 센서는 상대적으로 저가의 가격으로 현장 정보를 왜곡 없이 음향 신호를 수집할 수 있다는 큰 장점을 기반으로 다양한 분야에 설치되고 있다. 그러나 소리 취득 시 발생하는 잡음을 효과적으로 제어하지 못한다면 산업 현장의 이벤트를 안정적으로 분류할 수 없으며, 분류하지 못한 이벤트가 이상 상황이라면 이로 인한 피해는 막대해질 수 있다. 본 연구에서는 잡음 상황에서도 강인한 시스템을 보장하기 위하여, 딥러닝 알고리즘을 기반으로 잡음의 영향을 개선 시킨 음향 신호를 생성한 후, 해당 음향 이벤트를 분류할 수 있는 시스템을 제안한다. 특히, GAN을 기반으로 VAE 기술을 적용한 SEGAN을 활용하여 아날로그 음향 신호 자체에서 잡음이 제거된 신호를 생성하였으며, 향상된 음향 신호를 데이터 변환과정 없이 CNN 구조의 입력 데이터로 활용한 후 음향 이벤트에 대한 식별까지도 가능하도록 end-to-end 기반의 음향 이벤트 분류 시스템을 설계하였다. 산업 현장에서 취득한 음향 데이터를 활용하여 제안하는 시스템의 성능을 실험적으로 검증한바, 99.29%(철도산업)와 97.80%(축산업)의 안정적인 분류 성능을 확인하였다.
2004년 5월 29일 발생한 울진해역지진(Mw 5.1)과 관련된 대기 인프라사운드 신호가 철원(진앙 거리 321 km) 및 대전(256 km) 관측소에 기록되었다. 신호의 지속시간은 수 분 이상이며, 음원 방향을 지시하는 후방-방위각은 28°이상의 큰 변화를 보였다. 역-투사 방법과 신호 감쇄 보정 결과, 인프라사운드 신호는 삼척-울진-포항까지 연결되는 약 4,600 ㎢ 면적의 지반운동으로 발생하였으며, 음원 최대 크기(BSP)는 11.1 Pa로 계산되었다. 이 결과는 최대지반가속도(PGA) 자료로 계산한 음원 최대 크기(PSP)와도 부합하고 있으며, 지진 발생 당시 인프라사운드 신호 탐지를 가능케 했던 최소 지반운동은 ~3.0 cm s-2 이상으로 확인되었다. 울진해역지진이 비록 동해 해역에서 발생하였지만, 진앙과 가까운 강원도 남부-경상북도의 고지대를 따라 전파한 표면파의 지반운동으로 회절 인프라사운드가 효과적으로 발생한 것으로 해석된다. 인프라사운드 관측을 통한 원거리 지진 지반운동 특성 추정 방법은 지진관측망이 설치되어 있지 않거나 관측소 수가 적은 지역을 대상으로 활용이 가능할 것이다.
이 연구에서는 과학자들의 연구 수행에서 나타나는 인식론적 특성을 반영한 개방적 참탐구 활동을 수행하도록 하고,이 과정에서 학생들이 실제로 과학의 인지과정을 경험하면서 참탐구 인식론을 반영한 추론 특성을 보이는지를 알아보고자 하였다. 서울시 소재 과학고등학교 1학년 학생 86명을 연구 대상으로 하였으며,4주 동안 비교집단 2개 학급의 학생들은 전통적인 학교 탐구 활동을 수행하게 하고 실험집단 2개 학급의 학생들은 개방적 참탐구 활동을 수행하게 한 후 학생들이 제기한 질문을 비교하였다. 그 결과 두 집단의 학생들이 제기한 질문의 빈도는 크게 차이가 없었으나,질문의 유형에는 차이가 있었다. 실험집단에서 사고 질문의 빈도가 높게 나타났고,질문의 세부 유형에서도 비교집단 학생들의 질문과 유의미한 차이를 보였다(p <.01) 특히 사고를 확장시키는 질문과 변칙 데이터에 대한 질문의 빈도에서 큰 차이가 있었다. 또한 실험 집단에서 제기된 질문 가운데에는 과학적 방법,변칙 데이터,추론의 불확실성과 같은 참과학의 인식론을 반영하는 질문들이 발견되어 개방적 참탐구 수행에서 학생들이 과학적 인식론을 이해하게 될 가능성을 확인할 수 있었다. 그리고 탐구주제에 따른 질문 비교에서 개방도가 높아질수록 변칙탐지 질문과 전략질문의 빈도가 높아지는 경향이 있었고,귀납적 질문과 유추적 질문의 경우에는 개방도보다는 탐구 주제와 관련이 있는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.