• Title/Summary/Keyword: 탐지 및 식별

Search Result 301, Processing Time 0.043 seconds

감시정찰 센서네트워크의 표적 탐지 및 식별 알고리즘에 관한 연구

  • Sim, Hyeon-Min;Kim, Tae-Bok;Kim, Lee-Hyeong;Gang, Tae-In
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.324-328
    • /
    • 2007
  • 본 논문은 감시정찰 센서네트워크에서 센서노드의 주요 기능인 표적의 탐지 및 식별을 위한 알고리즘을 제안한다. 감시정찰 센서네트워크에서 각 센서노드는 노드의 크기 및 센서, 프로세서, 네트워크, 전원 등의 자원의 제약이 있기 때문에 침입하는 적의 탐지 및 종류 식별을 위해서는 효율적인 알고리즘의 선정과 최적화가 요구된다. 본 논문에서는 음향, 진동, PIR, 자기 센서 등을 이용하여 사람, 차량 및 궤도 차량의 침입을 탐지하기 위한 적응 임계값 알고리즘과 그 종류를 식별하기 위한 최대우도추정 기법, k-최근접 이웃 추정 기법에 기반한 표적의 탐지 및 식별 알고리즘을 제안한다. 실험결과 음향 및 진동 센서에 의한 차량의 탐지, PIR 센서에 의한 사람의 탐지가 가능함을 확인할 수 있었으며 주파수 특징점을 이용하여 차량과 궤도차량의 종류식별이 가능함을 확인할 수 있었다.

  • PDF

Ship Radiated Noise Measurement, Analysis and Prediction (선박 방사소음의 측정, 분석 및 예측)

  • 윤종락;김천덕;하강열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.524-532
    • /
    • 1997
  • 수중음향표적 특히 선박방사소음을 탐지하거나 식별하는 군사적 목적의 수동소나는 수중청음기 배열로 구성되며 각 배열센서에 수신된 신호에 배열 신호처리기술을 적용하여 선박의 거리, 방위 탐지는 물론 선박의 음향적 특징을 식별하는 고도의 음향장치이다. 그러나 이러한 장치운용자의 선박탐지, 식별이나 새로운 수동소나 개발, 나아가 스텔스 능력의 선박 설계를 위해서는 선박방사소음의 측정, 분석 및 예측에 관한 이해가 선행되어야 할 것이다. 본 연구는 대표적인 선박방사소음 측정시스템의 소개, 방사소음발생기구, 측정자료의 분석 및 예측에 관한 기초기술을 연구 분석한 내용이다.

  • PDF

A Face Recognition Based Suspected Criminal Detection and Identification System (얼굴 인식 기반의 범죄 용의자 탐지 및 식별 시스템)

  • Lee, Jong-Uk;Kang, Bong-Su;Lee, Han-Sung;Park, Dae-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.11a
    • /
    • pp.127-128
    • /
    • 2010
  • 본 논문에서는 CCTV 감시 영상에서 취득한 얼굴 이미지를 이용하여, 범죄자 감시목록에 등록된 범죄 용의자를 탐지 식별하는 시스템을 설계 및 구현하였다. 특히 본 논문에서 제안한 SVDD와 SRC를 혼합한 계층적 구조의 범죄 용의자 식별 모듈은 다음과 같은 특성을 갖는다: 1) 먼저 SVDD를 이용하여 범죄 용의자만을 빠르게 인식함으로써, 일반인에 대한 불필요한 범죄자 식별 연산을 수행하지 않는다; 2) 다양한 식별 성능을 저해하는 환경에서도 이미 강인한 성능이 검증된 SRC를 범죄 용의자 식별과정에 적용함으로써 안정적이고 정확한 식별 시스템을 보장한다; 3) 동일 생체 특정의 반복적 사용을 통한 다수결 투표전략을 취함으로써 시스템의 신뢰도를 보장한다; 4) 점증적 갱신의 학습 능력으로 인하여 범죄 용의자 감시목록 데이터베이스의 변화에도 능동적으로 적응한다 실제 KUFD(Korea University Face Database)를 자체 제작하고 캠퍼스 내에서 CCTV 환경의 얼굴 인식 기반 범죄 용의자 탐지 및 식별 시스템 환경을 모의 구축하여 실험적으로 제안된 시스템의 성능을 검증한다.

  • PDF

인코넬600 합금의 응력부식균열 탐지

  • 성게용;이승혁;김인섭;윤용구
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.104-109
    • /
    • 1997
  • 인코넬600 합금을 열처리상태 및 변형속도등이 서로 다른 응력부식균열(SCC) 발생 조건하에서 정변형속도 시험법으로 인장시켜 그때 발생되는 AE신호와 부식전류를 측정하여 균열거동과 비교하므로서 SCC 발생 및 진전을 AE로서 적절히 탐지할 수 있는가를 연구하였다. 그 결과 SCC. 연성파괴 및 기계적인 변형에서 발생되는 AE는 amplitude 준위에 의해 식별가능하며, 이것은 AE amplitude 준위가 AE발생원을 식별할 수 있는 중요한 변수가 될 수 있음을 의미한다. 또한 AE 발생시점과 전기 화학적 전류변동이 들 일치하는 것으로 나타나 입계응력부식 균열 진전이 AE에 의해 적절히 탐지될 수 있음을 알 수 있다.

  • PDF

A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique (정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구)

  • Kim, Su-jeong;Ha, Ji-hee;Oh, Soo-hyun;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.775-784
    • /
    • 2019
  • Malware infringement attacks are continuously increasing in various environments such as mobile, IOT, windows and mac due to the emergence of new and variant malware, and signature-based countermeasures have limitations in detection of malware. In addition, analytical performance is deteriorating due to obfuscation, packing, and anti-VM technique. In this paper, we propose a system that can detect malware based on machine learning by using similarity hashing-based pattern detection technique and static analysis after file classification according to packing. This enables more efficient detection because it utilizes both pattern-based detection, which is well-known malware detection, and machine learning-based detection technology, which is advantageous for detecting new and variant malware. The results of this study were obtained by detecting accuracy of 95.79% or more for benign sample files and malware sample files provided by the AI-based malware detection track of the Information Security R&D Data Challenge 2018 competition. In the future, it is expected that it will be possible to build a system that improves detection performance by applying a feature vector and a detection method to the characteristics of a packed file.

Underwater Transient Signal Classification Using Eigen Decomposition Based on Wigner-Ville Distribution Function (위그너-빌 분포 함수 기반의 고유치 분해를 이용한 수중 천이 신호 식별)

  • Bae, Keun-Sung;Hwang, Chan-Sik;Lee, Hyeong-Uk;Lim, Tae-Gyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.123-128
    • /
    • 2007
  • This Paper Presents new transient signal classification algorithms for underwater transient signals. In general. the ambient noise has small spectral deviation and energy variation. while a transient signal has large fluctuation. Hence to detect the transient signal, we use the spectral deviation and power variation. To classify the detected transient signal. the feature Parameters are obtained by using the Wigner-Ville distribution based eigenvalue decomposition. The correlation is then calculated between the feature vector of the detected signal and all the feature vectors of the reference templates frame-by-frame basis, and the detected transient signal is classified by the frame mapping rate among the class database.

Hierarchical watermarking technique for detecting digital watermarking attacks (디지털 워터마킹 공격 탐지를 위한 계층적 워터마킹 기법)

  • Do-Eun Kim;So-Hyun Park;Il-Gu Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.283-284
    • /
    • 2024
  • 디지털 워터마킹은 디지털 컨텐츠에 정보를 삽입하는 기술이다. 종래의 디지털 워터마킹 기술은 견고성과 비가시성 사이에 트레이드오프 관계를 가지고, 변형 및 노이즈 공격 등에 취약하다. 본 논문에서는 호스트 이미지의 비가시성을 보장하면서 효율적인 공격 탐지와 소유자 식별이 가능한 워터마킹 기법을 제안한다. 제안한 방식은 주파수 분할 기반의 계층적 워터마킹 및 공격 탐지 시그니처 삽입을 통해 비가시성을 보장하며 용량과 견고성 측면에서 종래의 방법보다 향상된 성능을 보였다. 실험 결과에 따르면 종래의 디지털 워터마크가 무력화되는 왜곡 공격 상황에서 공격 탐지 시그니처 검출이 가능하여 워터마크 공격을 탐지하고 소유자를 식별할 수 있었다.

Multi-type object detection-based de-identification technique for personal information protection (개인정보보호를 위한 다중 유형 객체 탐지 기반 비식별화 기법)

  • Ye-Seul Kil;Hyo-Jin Lee;Jung-Hwa Ryu;Il-Gu Lee
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.11-20
    • /
    • 2022
  • As the Internet and web technology develop around mobile devices, image data contains various types of sensitive information such as people, text, and space. In addition to these characteristics, as the use of SNS increases, the amount of damage caused by exposure and abuse of personal information online is increasing. However, research on de-identification technology based on multi-type object detection for personal information protection is insufficient. Therefore, this paper proposes an artificial intelligence model that detects and de-identifies multiple types of objects using existing single-type object detection models in parallel. Through cutmix, an image in which person and text objects exist together are created and composed of training data, and detection and de-identification of objects with different characteristics of person and text was performed. The proposed model achieves a precision of 0.724 and mAP@.5 of 0.745 when two objects are present at the same time. In addition, after de-identification, mAP@.5 was 0.224 for all objects, showing a decrease of 0.4 or more.

A Study on the Construction of Specialized NER Dataset for Personal Information Detection (개인정보 탐지를 위한 특화 개체명 주석 데이터셋 구축 및 분류 실험)

  • Hyerin Kang;Li Fei;Yejee kang;Seoyoon Park;Yeseul Cho;Hyeonmin Seong;Sungsoon Jang;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.185-191
    • /
    • 2022
  • 개인정보에 대한 경각심 및 중요성 증대에 따라 텍스트 내 개인정보를 탐지하는 태스크가 주목받고 있다. 본 연구에서는 개인정보 탐지 및 비식별화를 위한 개인정보 특화 개체명 태그셋 7개를 고안하는 한편 이를 바탕으로 비식별화된 원천 데이터에 가상의 데이터를 대치하고 개체명을 주석함으로써 개인정보 특화 개체명 데이터셋을 구축하였다. 개인정보 분류 실험에는 KR-ELECTRA를 사용하였으며, 실험 결과 일반 개체명 및 정규식 바탕의 규칙 기반 개인정보 탐지 성능과 비교하여 특화 개체명을 활용한 딥러닝 기반의 개인정보 탐지가 더 높은 성능을 보임을 확인하였다.

  • PDF

Staged Damage Detection of a RC Mock-up Structure by Artificial Neural Network (인공신경망을 이용한 RC Mock-up 구조물의 단계별 손상탐지)

  • Kwon, Hung-Joo;Kim, Ji-Young;Yu, Eun-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.676-679
    • /
    • 2011
  • 인공신경망(Artificial Neural Network)을 이용하여 RC Mock-up 구조물의 손상위치 및 손상정도를 단계적으로 추정하였다. 대상 구조물은 가진실험을 통하여 구조물의 응답을 취득하고 구조물식별기법(Structural System Identification)을 통하여 구조물의 동특성을 찾았다. 유한요소해석프로그램을 사용하여 동특성이 계측치와 가장 유사한 기본해석모델을 만든 후 이 기본해석모델을 이용하여 학습데이터를 생성하였다. 기존 인공신경망을 이용한 손상탐지를 개선하고자 본 연구에서는 인공신경망 학습데이터를 분석하였고 효과적인 손상탐지를 위하여 학습데이터를 가공하였다. 가공된 학습데이터를 사용하여 단계별 손상탐지를 실시하였고 기존 손상탐지 방법보다 좋은 결과를 유도하였다.

  • PDF