Port scanning detection systems should rather satisfy a certain level of the requirement for system performance like a low rate of “False Positive” and “False Negative”, and requirement for convenience for users to be easy to manage the system security with detection systems. However, public domain Real Time Scan Detection Systems have high rate of false detection and have difficulty in detecting various scanning techniques. In addition, as current real time scan detection systems are based on command interface, the systems are poor at user interface and thus it is difficult to apply them to the system security management. Hence, we propose TkRTSD(Tcl/Tk Real Time Scan Detection System) that is able to detect various scan attacks based on port scanning techniques by applying a set of new filter rules, and minimize the rate of False Positive by applying proposed ABP-Rules derived from attacker's behavioral patterns. Also a GUI environment for TkRTSD is implemented by using Tcl/Tk for user's convenience of managing network security.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.380-382
/
2003
현재 네트워크 보안 취약점을 자동으로 검색해주는 다양한 도구들이 인터넷에 공개되어 있어 이러한 도구들을 이용한 취약점 정보수집 및 네트워크 검색공격으로 비롯된 해킹사고가 크게 증가하고 있다. 이와 같은 검색 공격에 대한 탐지 시스템은 "False-Positive(실제 공격이 아닌데 공격이라고 탐지)"와 "False-Negative(실제 공격인데 공격이 아니라고 탐지)"를 줄이는 것이 중요하다. 그러나 현재 공개되어 있는 실시간 스캔 탐지 시스템은 오탐율이 높을 분만 아니라 다양한 스캔 기법에 대해서 탐지를 할 수 없는 것이 사실이다. 본 논문에서는 다양한 포트스캐닝 기법기반의 공격에 대해서 탐지 가능하고 오탐율을 최소화한 실시간 스캔 탐지 시스템을 구현한다.실시간 스캔 탐지 시스템을 구현한다.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.380-383
/
2015
오용 탐지모델 기반의 침입탐지시스템은 새로운 사이버 공격을 탐지하기 위해 지속적으로 탐지규칙을 생성해야 한다. 공격에 대한 특징을 정확히 식별하지 못하고 탐지규칙을 생성할 경우 많은 false positive를 발생시키며, 이로 인해 침해사고 대응시간이 늦어진다. 본 논문에서는 침입탐지시스템에서 탐지된 이벤트의 true positive와 false positive 데이터를 Keyword Tree의 node에 경로를 지나가는 횟수를 누적하는 값을 포함시킨 자료구조를 기반으로 비교분석하여 false positive를 감소시킬 수 있는 탐지규칙 패턴 생성 기법을 제안한다.
In this paper, We propose detection mood generation system using learning to generate automatically detection model. It is improved manpower, efficiency in time. Proposed detection model generator system is consisted of agent system and manager system. Model generation can do existing standardization by genetic algorithm because do model generation and apply by new detection model. according to experiment results, detection model generation using learning proposed sees more efficiently than existing intrusion detection system. When intrusion of new type occur by implemented system and decrease of the False-Positive rate, improve performance of existing intrusion detection system.
네트웍 기반의 컴퓨터 보안이 컴퓨터 보안분야의 중요한 문제점으로 인식이 된 이래 네트웍 기반의 침입탐지 방법 중 클러스터링(Clustering)을 이용한 비정상 탐지기법(Anomaly detection)을 사용하는 시도들이 있었다. 네트웍 데이터 같은 대량의 데이터의 처리에 클러스터링을 통한 방법이 효과적인 결과를 나타내었음이 다수의 논문에서 제기되어왔으나 이 모델에서의 클러스터링 방법은 네트웍 정보로부터 추출한 정보들을 정상적인 클러스터들과 그렇지 않은 클러스터들 크게 두 집단으로 나누는 방법을 택했었는데 침입탐지율에서 만족할만한 결과를 얻지 못했었다. 본 논문에서 제안하고자 하는 모델에서는 이를 좀 더 세분화하여 네트웍 서비스(Network service)별로 정상적인 클러스터들과 그렇지 않은 클러스터들을 가지게되는 방법을 적용하여 기존 모델에서의 침입탐지율 결과의 개선을 도모해 보고자한다.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2002.11a
/
pp.524-527
/
2002
본 연구에서는 Support Vector Machine(SVM)을 이용한 호스트 기반 침임 탐지 방법을 제안한다. 침입 탐지는 침입과 정상을 판단하는 이진분류 문제이므로 이진분류에 뛰어난 성능을 발휘하는 SVM을 이용하여 침입 탐지 시스템을 구현하였다. 먼저 감사자료를 system call level에서 분석한 후, sliding window기법에 의해 패턴 feature를 추출하고 training set을 구성하였다. 여기에 SVM을 적용하여 decision model을 생성하였고, 이에 대한 판정 테스트 결과 90% 이상의 높은 침입탐지 적중률을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2002.04a
/
pp.859.2-897
/
2002
네트워크의 급격한 발전에 따라 컴퓨터의 보안 문제가 계속 대두되고 있다. 이러한 보안관리 시스템으로 이동 에이전트를 이용한 침입탐지 시스템이 계속 연구되어지고 있다. 본 논문에서는 기존의 침입탐지시스템을 고찰하고 작은 에이전트의 그룹으로 구성된 자율성을 가진 이동 에이전트를 기반으로 한 모듈 접근방식의 시스템을 위한 모델링을 제공한다. 제안된 모델은 침입 정보를 동적으로 수집하고 탐지 에이전트를 학습시키고 탐지한다. 이동 에이전트는 통신 비용절감, 로컬자원 사용의 한계에서의 독립, 관리의 편의성 제공. 비동기 연산 등 다양한 이점을 가지고, 분산 연산을 위만 유동성 있는 구조를 제공한다.
Journal of the Korea Society of Computer and Information
/
v.19
no.1
/
pp.85-94
/
2014
This paper studied the detection technique using file DNA-based behavior pattern analysis in order to minimize damage to user system by malicious programs before signature or security patch is released. The file DNA-based detection technique was applied to defend against zero day attack and to minimize false detection, by remedying weaknesses of the conventional network-based packet detection technique and process-based detection technique. For the file DNA-based detection technique, abnormal behaviors of malware were splitted into network-related behaviors and process-related behaviors. This technique was employed to check and block crucial behaviors of process and network behaviors operating in user system, according to the fixed conditions, to analyze the similarity of behavior patterns of malware, based on the file DNA which process behaviors and network behaviors are mixed, and to deal with it rapidly through hazard warning and cut-off.
Journal of the Korea Institute of Information Security & Cryptology
/
v.28
no.4
/
pp.963-974
/
2018
With the growing interest in cryptocurrency such as bitcoin, the blockchain technology has attracted much attention in various applications as a distributed security platform with excellent security. However, Cryptojacking, an attack that hijack other computer resources such as CPUs, has occured due to vulnerability to the Cryptomining process. In particular, browser-based Cryptojacking is considered serious because attacks can occur only by visiting a Web site without installing it on a visitor's PC. The current Cryptojacking detection system is mostly signature-based. Signature-based detection methods have problems in that they can not detect a new Cryptomining code or a modification of existing Cryptomining code. In this paper, we propose a Cryptojacking detection solution using a dynamic analysis-based that uses a headless browser to detect unknown Cryptojacking attacks. The proposed dynamic analysis-based Cryptojacking detection system can detect new Cryptojacking site that cannot be detected in existing signature-based Cryptojacking detection system and can detect it even if it is called or obfuscated by bypassing Cryptomining code.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.2-2
/
2023
기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라 실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과 날씨에 무관하게 촬영이 가능하여 수재해 발생시에도 영상을 확보할 수 있다. 합성개구레이다를 활용한 수체 탐지 알고리즘 개발이 활발히 연구되어 왔고, 딥러닝의 발달로 CNN을 활용하여 높은 정확도로 수체 탐지가 기능해졌다. 하지만, CNN 기반 수체 탐지 모델은 훈련시 높은 정량적 정확성 지표를 달성하여도 추론 후 정성적 평가시 경계와 소하천에 대한 탐지 정확성이 떨어진다. 홍수 모니터링에서 특히 중요한 정보인 경계와 좁은 하천에 대해서 정확성이 떨어짐에 따라 실생활 적용이 어렵다. 이에 경계를 강화한 적대적 학습 기반의 수체 탐지 모델을 개발하여 더 세밀하고 정확하게 탐지하고자 한다. 적대적 학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로 관여하며 더 높은 정확도를 달성할 수 있도록 학습이다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여, 생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로 라벨데이터와 수체 탐지 결과를 구분한다. 경계가 강화될 수 있도록, 면적과 경계를 모두 고려할 수 있는 손실함수 조합을 구성하였다. 제안 모델이 경계와 소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score를 사용하였으며, 육안 판독을 통해 정성적 평가도 진행하였다. 기존 U-Net 모델이 탐지하지 못하던 영역에 대해 제안한 경계 강화 적대적 수체 탐지 모델이 수체의 세밀한 부분까지 탐지할 수 있음을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.