Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.172-174
/
2001
침입 탐지란 컴퓨터와 네트워크 지원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 따라, 대용량의 데이터를 지능적으로 분석하여 의미있는 정보를 추출하는 데이터 마이닝 기법을 적용함으로써 지능적이고 자동화된 탐지를 수행할 수 있도록 한다. 본 논문에서는 학습 데이터를 각각 사례로 데이터베이스에 저장한 후, 실험 데이터가 입려되면 가장 가까운 거리에 있는 학습 데이터의 크래스로 분류하는 사례 기반 학습을 이용하여 빠르게 사용자의 이상 행위에 대해 판정한다. 그러나 많은 사례로 인해 기억 공간이 늘어날 경우 시스템의 성능이 저하되는 문제점을 고려하여, 빈발 에피소드 알고리즘을 수행하여 발견한 순차 패턴을 사례화하여 정상 행위 프로파이로 사용하는 순차패턴에 대한 사례 기반 학습을 제안한다. 이로써, 시스템 성능의 저하율을 낮추고 빠르며 정확하게 지능적인 침입 탐지를 수행할 수 있다.
인터넷 뱅킹은 인터넷을 통해 금융 업무를 처리하는 시스템으로, 시 공간적 제약이 없어 이용자가 크게 증가하고 있지만 인터넷을 기반으로 한 웹 공격으로 인하여 많은 위협을 받고 있다. 인터넷 뱅킹은 서비스를 제공하는 은행에 따라 사용자 인터페이스와 처리 방법이 매우 다양하므로, 인터넷 뱅킹 시스템을 목표로 한 웹 공격을 탐지하기 위해서는 해당 인터넷 뱅킹 서비스의 특징을 반영할 수 있는 고유의 패턴을 생성해야 한다. 본 논문에서는 서열 정렬 알고리즘을 이용하여 인터넷 뱅킹 이용에 대한 정상 및 비정상 패턴을 자동으로 생성하여 웹 공격을 탐지하고 분석하는 방법을 제안한다. 제시한 방법의 성능 평가를 위하여, 모의 인터넷 뱅킹 프로그램을 설치한 후 정상적인 이용과 웹 공격을 시도한 자료를 구분하여 수집하고 유사도를 측정하였다. 실험결과 제안된 기법이 오탐율이 낮고 탐지 성능 또한 뛰어남을 확인하였다. 그리고 전문가의 도움 없이 정상 패턴과 비정상 패턴을 생성할 수 있어 효율적으로 변형된 공격이나 새로운 공격을 차단하고 비정상 행위에 판단에 대한 근거를 제시할 수 있음을 보였다.
신용카드 부정 사용은 고객 및 기업의 신용과 재산에 막대한 손실을 미치고 있다. 이에 따라 금융사들은 이상금융거래탐지시스템을 도입하였으나 이상 거래 발생 여부를 지속적으로 모니터링하고 있기 때문에 시스템 유지에 많은 비용이 따른다. 따라서 본 논문에서는 컴퓨팅 리소스를 절약함과 동시에 성능 개선 효과를 보인 신용카드 이상 거래 탐지 알고리즘을 제안한다. CTGAN 을 활용하여 정상 거래와 이상 거래의 비율을 일부 완화하였고 XAI 기법인 SHAP 를 활용하여 유의미한 속성값을 선택하였다. 이것을 기반으로 LSTM Autoencoder를 사용하여 이상데이터를 탐지하였다. 그 결과 전통적인 비지도 학습 기법에 비해 제안 알고리즘이 우수한 성능을 보였음을 확인하였다.
In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.
신호 대 잡음비가 매우 낮은 수중 음원을 탐지하기 위해서는 많은 센서를 갖는 견인 배열 시스템을 운용하여야 한다. 그러나 이러한 경우 수백 미터에 이르는 배열을 견인함이 끌고 다닐 때 파도와 같은 해수면의 움직임과 견인선의 기동 형태에 따라 원하는 배열 형태를 항상 유지할 수 없다. 그러므로 본 논문에서는 실제 수 중 환경에서 견인되는 배열의 왜곡된 형태를 시간적으로 뿐만 아니라 공간적으로 통합된 센서의 움직임 근거로 한 상관 형태를 잘 표현한 ""Paidoussis"" 방정식을적용하여 이 방정식의 간단화된 형태인 수차 모형(Water pulley)배열을 협대역 목표물 탐지에 이용하였다. [1][2][8] 수차 모형 구조의 배열을 이용하여 사상 기법을 적용하면 수차 모형의 왜곡 특성으로 인해 센서간 간격이 비균일성을 가지는 가상의 선형 배열이 형성되어 진다. 본 논문에서는 사상 기법에 의해 생성된 가상의 선형 배열을 토대로 합성 어패처 방식의 일종인 FFTSA(Fast Fourier Transform Synthetic Aperture) 기법을 이용하여 센서 배열의 입사각 추정 성능에 중대한 영향을 부여하는 코히어런스 주기에 따른 추정 성능의 변화 및 견인함의 이동 경로 변화에 따른 변동 경로 주기에 따른 성능 변화를 분석하였다.
As the number of single-person households increases, it is not easy to ask for help alone if a single-person household is severely injured in the home. This paper detects abnormal event when members of a single household in the home are seriously injured. It proposes an vision detection algorithm that analyzes and recognizes patterns through videos that are collected based on home CCTV. And proposes audio detection algorithms that analyze and recognize patterns of sound that occur in households based on Smartphones. If only each algorithm is used, shortcomings exist and it is difficult to detect situations such as serious injuries in a wide area. So I propose a fusion method that effectively combines the two algorithms. The performance of the detection algorithm and the precise detection performance of the proposed fusion method were evaluated, respectively.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.2
/
pp.192-197
/
2020
Multivariate processes, such as large scale power plants or chemical processes are operated in very hazardous environment, which can lead to significant human and material losses if a fault occurs. On-line monitoring technology, therefore, is essential to detect system faults. In this paper, the ICA-based fault detection method is conducted using three different multivariate process data. Fault detection procedure based on ICA is divided into off-line and on-line processes. The off-line process determines a threshold for fault detection by using the obtained dataset when the system is normal. And the on-line process computes statistics of query vectors measured in real-time. The fault is detected by comparing computed statistics and previously defined threshold. For comparison, the PCA-based fault detection method is also implemented in this paper. Experimental results show that the ICA-based fault detection method detects the system faults earlier and better than the PCA-based method.
C/C++에는 다수의 메모리 취약점이 존재하며 ASan은 낮은 오버헤드와 높은 탐지율로 이러한 메모리 취약점을 탐지하기 위해 광범위하게 사용되고 있다. 그러나 상용 프로그램 중 다수는 메모리를 효율적으로 사용하기 위해 Custom Memory Allocator(CMA)를 구현하여 사용하며, ASan은 이러한 CMA로부터 파생된 버그를 대부분 탐지하지 못한다. 이를 극복하기 위해 본 연구에서는 LLVM IR 코드를 RNN 신경망에 학습하여 CMA를 탐지하고, ASan이 CMA를 식별할 수 있도록 수정하여 CMA로부터 파생된 메모리 취약점을 탐지할 수 있는 도구인 CMASan을 제안한다. ASan과 CMASan의 성능 및 CMA 관련 취약점의 탐지 결과를 비교·분석하여 CMASan이 낮은 실행시간 및 적은 메모리 오버헤드로 ASan이 탐지하지 못하는 메모리 취약점을 탐지할 수 있음을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.11a
/
pp.7-9
/
2005
본 논문에서는 행위 기반의 침입 탐지와 탐지한 트래픽을 차단하는 기능을 갖는 시스템을 프로세스 기반 사건 중심 시뮬레이션 시스템인 SSFNet을 기반으로 구현하고, 다양한 시뮬레이션을 통해 구현된 시스템의 성능 및 실세계 반영 모습을 시뮬레이션 하였다. 제안된 시스템은 능동적인 패킷 분석을 통한 유해 트래픽을 구분하는 기능을 포항하고 있다. 시뮬레이션에서는 실제 사파이어 웜을 구현하여 시스템의 성능 검증을 하였으며, 기타 기본적인 네트워크 공격에 대한 행위도 구현 하여 시스템의 성능을 검증하였다.
ESG 경영이 중요해짐에 따라 기업의 분식 여부도 중요해졌다. 따라서 본 논문에서는 인공신경망과 랜덤포레스트를 활용하여 기업의 분식회계 여부를 판단 성능을 비교분석하고 그 유용성에 대해 평가하였다. 실제 기업 회계정보를 수집하여 실험을 수행하였고, 실험 결과 F1-Score 기준 랜덤포레스트의 RFECV 기법이 0.81로 분식 기업을, SMOTE 기법을 사용한 모델이 정상 기업을 탐지하였고 Accuracy 기준 랜덤포레스트의 RFECV 기법과 SMOTE 기법을 사용한 모델이 0.77로 가장 효과적인 탐지 성능을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.