• Title/Summary/Keyword: 탐색알고리듬

Search Result 202, Processing Time 0.029 seconds

Speech Recognition in the Pager System displaying Defined Sentences (문자출력 무선호출기를 위한 음성인식 시스템)

  • Park, Gyu-Bong;Park, Jeon-Gue;Suh, Sang-Weon;Hwang, Doo-Sung;Kim, Hyun-Bin;Han, Mun-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.158-162
    • /
    • 1996
  • 본 논문에서는 문자출력이 가능한 무선호출기에 음성인식 기술을 접목한, 특성화된 한 음성인식 시스템에 대하여 설명하고자 한다. 시스템 동작 과정은, 일단 호출자가 음성인식 서버와 접속하게 되면 서버는 호출자의 자연스런 입력음성을 인식, 그 결과를 문장 형태로 피호출자의 호출기 단말기에 출력시키는 방식으로 되어 있다. 본 시스템에서는 통계적 음성인식 기법을 도입하여, 각 단어를 연속 HMM으로 모델링하였다. 가우시안 혼합 확률밀도함수를 사용하는 각 모델은 전통적인 HMM 학습법들 중의 하나인 Baum-Welch 알고리듬에 의해 학습되고 인식시에는 이들에 비터비 빔 탐색을 적용하여 최선의 결과를 얻도록 한다. MFCC와 파워를 혼용한 26 차원 특징벡터를 각 프레임으로부터 추출하여, 최종적으로, 83 개의 도메인 어휘들 및 무음과 같은 특수어휘들에 대한 모델링을 완성하게 된다. 여기에 구문론적 기능과 의미론적 기능을 함께 수행하는 FSN을 결합시켜 자연발화음성에 대한 연속음성인식 시스템을 구성한다. 본문에서는 이상의 사항들 외에도 음성 데이터베이스, 레이블링 등과 갈이 시스템 성능과 직결되는 시스템의 외적 요소들에 대해 고찰하고, 시스템에 구현되어 있는 다양한 특성들에 대해 밝히며, 실험 결과 및 앞으로의 개선 방향 등에 대해 논의하기로 한다.

  • PDF

Optimized Global Path Planning of a Mobile Robot Using uDEAS (uDEAS를 이용한 이동 로봇의 최적 전역 경로 계획)

  • Kim, Jo-Hwan;Kim, Man-Seok;Choi, Min-Koo;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.268-275
    • /
    • 2011
  • This paper proposes two optimal path planning methods of a mobile robot using uDEAS (univariate Dynamic Encoding Algorithm for Searches). Before start of autonomous traveling, a self-controlled mobile robot must generate an optimal global path as soon as possible. To this end, numerical optimization method is applied to real time path generation of a mobile robot with an obstacle avoidance scheme and the basic path generation method based on the concept of knot and node points between start and goal points. The first improvement in the present work is to generate diagonal paths using three node points in the basic path. The second innovation is to make a smooth path plotted with the blending polynomial using uDEAS. Effectiveness of the proposed schemes are validated for several environments through simulation.

Application of Optimum Design Technique in Determining the Coefficient of Consolidation Using Piezocone Test (피에조 콘 시험을 이용정회원, 한국과학기술원 토목공학과 부교수, 정회원, 한국과학기술원 토목공학과 박사 후 과정한 망일계수 결정시 최적화 기법의 적용)

  • Kim, Yeong-Sang;Lee, Seung-Rae;Kim, Yun-Tae
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.95-108
    • /
    • 1997
  • For normally consolidated clay, several researchers have developed a number of theoretical time factors to determine the coefficient of consolidation However, depending on the assumptions and analytical techniques, it could considerably vary even for a specific degree of consolidation. In this paper, a method is proposed to determine a consistent coefficient of consolidation over all ranges of degree of consolidation by applying the concept of the Optimum Design Technique. The initial excess pore pressure distribution is assumed to be obtainable by the successive spherical cavity expansion theory. The dissipation of pore pressure is simulated by means of two dimensional linear-uncoupled axisymmetric consolidation analysis. The minimization of the differences between the measured and the predicted excess pore pressures was carried by BFGS unconstrained optimum design algorithm with one dimensional golden section search technique. By analyzing numerical and real field examples, it can be found that the adopted optimum technique gives a consistent and convergent results.

  • PDF

Gait Generation Method for a Quadruped Robot with a Waist Joint to Walk on the Slope (허리 관절을 갖는 4족 로봇의 경사면 보행을 위한 걸음새 생성 방법)

  • Kim, Guk-Hwa;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.617-623
    • /
    • 2012
  • In this paper, we propose a gait generation method for a quadruped robot to walk efficiently on the slope, which uses the waist joint of a quadruped robot. We derive the kinematic model of a quadruped robot with waist joint using the Denavit-Hartenberg representation method and the algebraic method. In addition, the gaits are generated based on the wave gait. In the proposed gait generation method, first in order to alleviate the mechanical restriction and the reduction of the stride, we determine the appropriate waist joint angle according to the slope degree, and then decide the location of the tiptoe of a quadruped robot by exploring the workspace. Finally, through computer simulations, we verify the effectiveness and applicability of the proposed method.

Study on the Convergency Improvement Method for the Saturation-Property Calculation of Multi-Component Hydrocarbon Systems (다성분 탄화수소혼합물 포화물성해석 수렴도 향상 연구)

  • Shin, Chang-Hoon;An, Seung-Hee;Lee, Jeong-Hwan;Sung, Won-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.947-955
    • /
    • 2010
  • Most oil and gas reservoirs, which have some light hydrocarbon components, show sensitive phase behavior in response to changes in the composition of the internal fluid. When evaluating and developing plans for oil and gas fields, flash calculation, PVT analysis, and saturation-property calculation are necessary for analyzing reservoir characteristics and pipeline flows. In general, the determination of saturation properties such as dew point and bubble point is considered a difficult task because of the poor convergence of the calculation methods. In this study, several new initial-value-guessing methods and root-finding methods are proposed; parametric analysis were carried out to verify the improvement in convergence. Finally, these new ideas and methods were successfully applied to the new GUI based multi-phase behavior simulator.

Image warping using an adaptive partial matching method (적응적 부분 정합 방법을 이용한 영상 비틀림 방법)

  • 임동근;호요성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2783-2797
    • /
    • 1997
  • This paper proposes a new motion estimation algorithm that employs matching in a variable search area. Instead of uisg a fixed search range for coarse motion estimation, we examine a varying search range, which is determined adaptively by the peak signal to noise ratio (PSNR) of the frame difference. The hexagonal matching method is one of the refined methods in image warping. It produces improved image quality, but it requires a large amount of computataions. The proposed adaptive partial matching method reduces computational complexity below about 50% of the hexagonal matching method, while maintaining the image quality comparable. The performance of two motion compensation methods, which combine the affine or bilinear transformation with the proposed motion estimation algorithm, is evaluated based on the following criteria:computtational complexity, number of coding bits, and reconstructed image quality. The quality of reconstructed images by the proposed method is substantially improved relative to the conventional BMA method, and is comparable to the full hexagonal matching method;in addition, computational complexity and the number of coding bits are reduced significantly.

  • PDF

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

Optimal Design of Water Distribution System considering the Uncertainties on the Demands and Roughness Coefficients (수요와 조도계수의 불확실성을 고려한 상수도관망의 최적설계)

  • Jung, Dong-Hwi;Chung, Gun-Hui;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • The optimal design of water distribution system have started with the least cost design of single objective function using fixed hydraulic variables, eg. fixed water demand and pipe roughness. However, more adequate design is accomplished with considering uncertainties laid on water distribution system such as uncertain future water demands, resulting in successful estimation of real network's behaviors. So, many researchers have suggested a variety of approaches to consider uncertainties in water distribution system using uncertainties quantification methods and the optimal design of multi-objective function is also studied. This paper suggests the new approach of a multi-objective optimization seeking the minimum cost and maximum robustness of the network based on two uncertain variables, nodal demands and pipe roughness uncertainties. Total design procedure consists of two folds: least cost design and final optimal design under uncertainties. The uncertainties of demands and roughness are considered with Latin Hypercube sampling technique with beta probability density functions and multi-objective genetic algorithms (MOGA) is used for the optimization process. The suggested approach is tested in a case study of real network named the New York Tunnels and the applicability of new approach is checked. As the computation time passes, we can check that initial populations, one solution of solutions of multi-objective genetic algorithm, spread to lower right section on the solution space and yield Pareto Optimum solutions building Pareto Front.

The Recognition of Occluded 2-D Objects Using the String Matching and Hash Retrieval Algorithm (스트링 매칭과 해시 검색을 이용한 겹쳐진 이차원 물체의 인식)

  • Kim, Kwan-Dong;Lee, Ji-Yong;Lee, Byeong-Gon;Ahn, Jae-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.7
    • /
    • pp.1923-1932
    • /
    • 1998
  • This paper deals with a 2-D objects recognition algorithm. And in this paper, we present an algorithm which can reduce the computation time in model retrieval by means of hashing technique instead of using the binary~tree method. In this paper, we treat an object boundary as a string of structural units and use an attributed string matching algorithm to compute similarity measure between two strings. We select from the privileged strings a privileged string wIth mmimal eccentricity. This privileged string is treated as the reference string. And thell we wllstructed hash table using the distance between privileged string and the reference string as a key value. Once the database of all model strings is built, the recognition proceeds by segmenting the scene into a polygonal approximation. The distance between privileged string extracted from the scene and the reference string is used for model hypothesis rerieval from the table. As a result of the computer simulation, the proposed method can recognize objects only computing, the distance 2-3tiems, while previous method should compute the distance 8-10 times for model retrieval.

  • PDF

GPU-only Terrain Rendering for Walk-through (Walk-through를 지원하는 GPU 기반 지형렌더링)

  • Park, Sun-Yong;Oh, Kyoung-Su;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.71-80
    • /
    • 2007
  • In this paper, we introduce an efficient GPU-based real-time rendering technique applicable to every kind of game. Our method, without an extra geometry, can represent terrain just with a height map. It makes it possible to freely go around in the air or on the surface, so we can directly apply it to any computer games as well as a virtual reality. Since our method is not based on any geometrical structure, it doesn't need special LOD policy and the precision of geometrical representation and visual quality absolutely depend on the resolution of height map and color map. Moreover, GPU-only technique allows the general CPU to be dedicated to more general work, and as a result, enhances the overall performance of the computer. To date, there have been many researches related to the terrain representation, but most of them rely on CPU or confmed its applications to flight simulation, Improving existing displacement mapping techniques and applying it to our terrain rendering, we completely ruled out the problems, such as cracking, poping etc, which cause in polygon-based techniques, The most important contributions are to efficiently deal with arbitrary LOS(Line Of Sight) and dramatically improve visual quality during walk-through by reconstructing a height field with curved patches. We suggest a simple and useful method for calculating ray-patch intersections. We implemented all these on GPU 100%, and got tens to hundreds of framerates with height maps a variety of resolutions$(256{\times}256\;to\;4096{\times}4096)$.

  • PDF