• Title/Summary/Keyword: 탐사 인자

Search Result 245, Processing Time 0.031 seconds

Quantifying the Spatial Heterogeneity of the Land Surface Parameters at the Two Contrasting KoFlux Sites by Semivariogram (세미베리오그램을 이용한 KoFlux 광릉(산림) 및 해남(농경지) 관측지 지면모수의 공간 비균질성 정량화)

  • Moon, Sang-Ki;Ryu, Young-Ryel;Lee, Dong-Ho;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • The remote sensing observations of land surface properties are inevitably influenced by the landscape heterogeneity. In this paper, we introduce a geostatistical technique to provide a quantitative interpretation of landscape heterogeneity in terms of key land surface parameters. The study areas consist of the two KoFlux sites: (1) the Gwangneung site, covered with temperate mixed forests on a complex terrain, and (2) the Haenam site with mixed croplands on a relatively flat terrain. The semivariogram and fractal analyses were performed for both sites to characterize the spatial heterogeneity of two radiation parameters, i.e., land surface temperature (LST) and albedo. These parameters are the main factors affecting the reflected longwave and shortwave radiation components from the two study sites. We derived them from the high-resolution Landsat ETM+ satellite images collected on 23 Sep. 2001 and 14 Feb. 2002. The results of our analysis show that the characteristic scales of albedo was >1 km at the Gwangneung site and approximately 0.3 km at the Haenam site. For LST, the scale of heterogeneity was also >1 km at the Gwangneung site and >0.6 to 1.0 km at the Haenam site. At both sites, there was little change in the characteristic scales of the two parameters between the two different seasons.

Comparison in Elastic Wave Propagation Velocity Evaluation Methods (탄성파의 매질 내 이동속도 산정방법 비교)

  • Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.31-37
    • /
    • 2014
  • In situ investigations and laboratory tests using elastic wave have become popular in geotechnical and geoenvironmental engineering. Propagation velocity of elastic wave is the key index to evaluate the ground characteristics. To evaluate this, various methods were used in both time domain and frequency domain. In time domain, the travel time can be found from the two points that have the same phase such as peaks or first rises. Cross-correlation can also be used in time domain by evaluating the time shift amount that makes the product of signals of input and received waveforms maximum. In frequency domain, wave propagation velocity can be evaluated by computing the phase differences between the source and received waves. In this study, wave propagation velocity evaluated by the methods listed above were compared. Bender element tests were conducted on the specimens cut from the undisturbed hand-cut block samples obtained from Block 37 excavation site in Chicago, IL, US. The evaluation methods in time domain provides relatively wide range of wave propagation velocities due to the noise in signals and the sampling frequency of data logger. Frequency domain approach provides relatively accurate wave propagation velocities and is irrelevant to the sampling frequency of data logger.

A Study on Spatial Downscaling of Satellite-based Soil Moisture Data (토양수분 위성자료의 공간상세화에 관한 연구)

  • Shin, Dae Yun;Lee, Yang Won;Park, Mun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.414-414
    • /
    • 2017
  • 토양수분은 지면환경에서 일어나는 수문 및 에너지 순환을 이해하는 데 있어 중요한 기상인자이다. 토양수분 현장관측은 땅속에 매설된 센서에 의해 상당히 정확하게 이루어지만, 관측점 수가 충분치 않아 공간적 연속성을 확보하지 못하는 어려움이 존재한다. 이에 광역적 및 연속적 관측이 가능한 마이크로파 위성센서가 토양수분 정보 획득을 위한 보조수단으로서 그 중요성이 부각되고 있다. 마이크로파 위성센서는 구름 등 기상조건의 제약을 받지 않으며, 1978년 이래 현재까지 여러 위성에 의해 25 km 및 10 km 해상도의 전지구 토양수분자료가 생산되어 왔다. 마이크로파 센서를 이용한 토양수분자료는 동일지점에 대하여 하루 2회 정도 산출되므로 적절한 시간분해능을 가지지만, 공간해상도가 최고 10 km로서 지역규모의 수문분석에 적용하기에는 충분치 않다. 이러한 토양수분자료의 공간해상도 문제 해결을 위하여 다양한 지면환경요소를 활용한 통계적 다운스케일링이 대안으로 제시되었다. 최근의 선행연구들은 대부분 방정식을 이용한 결합모형을 통해 통계적 다운스케일링을 수행하였는데, 회귀식과 같은 선형결합뿐 아니라 신경망이나 기계학습 등의 비선형결합에서도, 불가피하게 발생할 수밖에 없는 잔차(residual)로 인하여 다운스케일링 전후의 공간분포 패턴이 달라져버리는 문제를 안고 있었다. 회귀분석에 잔차의 공간내삽을 결합시킨 회귀크리깅(regression kriging)은 잔차보정을 통해 이러한 문제를 해결함으로써 다운스케일링 전후의 공간분포 일관성을 보장하는 기법이다. 이 연구에서는 회귀크리깅을 이용하여 일자별 AMSR2(Advanced Microwave Scanning Radiometer 2) 토양수분 자료를 10 km에서 1 km 해상도로 다운스케일링하고, 다운스케일링 전후의 자료패턴 일관성을 평가한다. 지면온도(LST), 지면온도상승률(RR), 식생온도건조지수(TVDI)는 일자별로 DB를 구축하였고, 식생지수(NDVI), 수분지수(NDWI), 지면알베도(SA)는 8일 간격으로 DB를 구축하였다. 이러한 8일 간격의 자료를 일자별로 변환하기 위하여 큐빅스플라인(cubic spline)을 이용하여 시계열내삽을 수행하였다. 또한 상이한 공간해상도의 자료는 최근린법을 이용하여 다운스케일링 목표해상도인 1 km에 맞도록 변환하였다. 우선 저해상도 스케일에서 추정치를 산출하기 위해서는 저해상도 픽셀별로 이에 해당하는 복수의 고해상도 픽셀을 평균화하여 대응시켜야 하며, 이를 통해 6개의 설명변수(LST, RR, TVDI, NDVI, NDWI, SA)와 AMSR2 토양수분을 반응변수로 하는 다중회귀식을 도출하였다. 이식을 고해상도 스케일의 설명변수들에 적용하면 고해상도 토양수분 추정치가 산출되는데, 이때 추정치와 원자료의 차이에 해당하는 잔차에 대한 보정이 필요하다. 저해상도 스케일로 존재하는 잔차를 크리깅 공간내삽을 통해 고해상도로 변환한 후 이를 고해상도 추정치에 부가해주는 방식으로 잔차보정이 이루어짐으로써, 다운스케일링 전후의 자료패턴 일관성이 유지되는(r>0.95) 공간상세화된 토양수분 자료를 생산할 수 있다.

  • PDF

A study on the selection of evapotranspiration observatory representative location in Chuncheon Dam basin (증발산량 관측 대표위치 선정에 관한 연구: 춘천댐 유역을 중심으로)

  • Park, Jaegon;Kim, Kiyoung;Lee, Yongjun;Hwag-Bo, Jong Gu
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.979-989
    • /
    • 2022
  • In hydrological surveys, observation through representative location is essential due to temporal and spatial limitations and constraints. Regarding the use of hydrological data and the accuracy of the data, there are still insufficient observatories to be used in a specific watershed. In addition, since there is virtually no standard for the location of the current evapotranspiration, this study proposes a method for determining the location of the evapotranspiration. To determining the location of evapotranspiration, a grid is selected in consideration of the operating range of the Flux Tower using the eddy covariance measurement method, which is mainly used to measure evapotranspiration. The grid of representative location was calculated using the factors affecting evapotranspiration and satellite data of evapotranspiration. The grid of representative location was classified as good, fair, and poor. As a result, the number of good grids calculated was 54. It is judged that the classification of the grid has been achieved regarding topography and land use as a characteristic that appeared in the classification of the grid. In particular, in the case of elevation or city area, there was a large deviation, and the calculated good grid was judged to be a group between the two distributions.

Historical Development of Research and Publications in Atmospheric Physics Field (대기물리 분야 연구논문 발전 현황)

  • Seong Soo Yum;Kyu-Tae Lee;Jong-Jin Baik;Gyuwon Lee;Sang-Woo Kim;Junshik Um
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.105-124
    • /
    • 2023
  • Research papers published in the Korean Meteorological Society (KMS) journals by the members of KMS since the establishment of KMS in 1963 in the field of atmospheric physics are summarized. A significant number of research papers published in other international journals are also cited in this paper to highlight the achievement of the KMS members in international academic community. The aim is to illustrate the historical development of research activities of the KMS members in the field of atmospheric physics, and indeed it is found that the KMS members have made enormous progress in research publications quantitatively and qualitatively in the field of atmospheric physics. In detail, however, observational studies of aerosol physical properties and cloud and precipitation physics were very active, and studies on cloud physics parameterization for cloud modeling were highly recognized in the world, but observational and theoretical studies of atmospheric radiation were relatively lacking and solicit more contribution from the KMS members.

A study on the development of a Blue-green algae cell count estimation formula in Nakdong River downstream using hyperspectral sensors (초분광센서를 활용한 낙동강 하류부 남조류세포수 추정식 개발에 관한 연구)

  • Kim, Gwang Soo;Choi, Jae Yun;Nam, Su Han;Kim, Young Dod;Kwon, Jae Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.373-380
    • /
    • 2023
  • Due to abnormal climate phenomena and climate change in Korea, overgrowth of algae in rivers and reservoirs occurs frequently. Algae in rivers are classified into green algae, blue-green algae, diatom, and other types, and some species of blue-green algae cause problems due to odor and the discharge of toxic substances. In Korea, an algae alert system is in place, and it is issued based on the number of harmful blue-green algae cells. Thus, measuring harmful blue-green algal blooms is very important, and currently, the analysis method of algae involves taking field samples and determining the cell count of green algae, blue-green algae, and diatoms through algal microscopy, which takes a lot of time. Recently, the analysis of algae concentration through Phycocyanin, an alternative indicator for the number of harmful algae cells, has been conducted through remote sensing. However, research on the analysis of the number of blue-green algae cells is currently insufficient. In this study, we water samples for algal analyses were collected from river and counted the number of blue-green algae cells using algae microscopy. We also obtained the Phycocyanin concentration using an optical sensor and acquired algae spectra through a hyperspectral sensor. Based on this, we calculated the equation for estimating blue-green algae cell counts and estimated the number of blue-green algae cells.

Estimate and Analysis of Planetary Boundary Layer Height (PBLH) using a Mobile Lidar Vehicle system (이동형 차량탑재 라이다 시스템을 활용한 경계층고도 산출 및 분석)

  • Nam, Hyoung-Gu;Choi, Won;Kim, Yoo-Jun;Shim, Jae-Kwan;Choi, Byoung-Choel;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.307-321
    • /
    • 2016
  • Planetary Boundary Layer Height (PBLH) is a major input parameter for weather forecasting and atmosphere diffusion models. In order to estimate the sub-grid scale variability of PBLH, we need to monitor PBLH data with high spatio-temporal resolution. Accordingly, we introduce a LIdar observation VEhicle (LIVE), and analyze PBLH derived from the lidar loaded in LIVE. PBLH estimated from LIVE shows high correlations with those estimated from both WRF model ($R^2=0.68$) and radiosonde ($R^2=0.72$). However, PBLH from lidar tend to be overestimated in comparison with those from both WRF and radiosonde because lidar appears to detect height of Residual Layer (RL) as PBLH which is overall below near the overlap height (< 300 m). PBLH from lidar with 10 min time resolution shows typical diurnal variation since it grows up after sunrise and reaches the maximum after 2 hours of sun culmination. The average growth rate of PBLH during the analysis period (2014/06/26 ~ 30) is 1.79 (-2.9 ~ 5.7) m $min^{-1}$. In addition, the lidar signal measured from moving LIVE shows that there is very low noise in comparison with that from the stationary observation. The PBLH from LIVE is 1065 m, similar to the value (1150 m) derived from the radiosonde launched at Sokcho. This study suggests that LIVE can observe continuous and reliable PBLH with high resolution in both stationary and mobile systems.

Effect of Red-edge Band to Estimate Leaf Area Index in Close Canopy Forest (울폐산림의 엽면적지수 추정을 위한 적색경계 밴드의 효과)

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.571-585
    • /
    • 2017
  • The number of spaceborne optical sensors including red-edge band has been increasing since red-edge band is known to be effective to enhance the information content on biophysical characteristics of vegetation. Considering that the Agriculture and Forestry Satellite is planning to carry an imaging sensor having red-edge band, we tried to analyze the current status and potential of red-edge band. As a case study, we analyzed the effect of using red-edge band and tried to find the optimum band width and wavelength region of the red-edge band to estimate leaf area index (LAI) of very dense tree canopy. Field spectral measurements were conducted from April to October over two tree species (white oak and pitch pine) having high LAI. Using the spectral measurement data, total 355 red-edge bands reflectance were simulated by varying five band width (10 nm, 20 nm, 30 nm, 40 nm, 50 nm) and 71 central wavelength. Two red-edge based spectral indices(NDRE, CIRE) were derived using the simulated red-edge band and compared with the LAI of two tree species. Both NDRE and CIRE showed higher correlation coefficients with the LAI than NDVI. This would be an alternative to overcome the limitation of the NDVI saturation problem that NDVI has not been effective to estimate LAI over very dense canopy situation. There was no significant difference among five band widths of red-edge band in relation to LAI. The highest correlation coefficients were obtained at the red-edge band of center wavelength near the 720 nm for the white oak and 710 nm for the pitch pine. To select the optimum band width and wavelength region of the red-edge band, further studies are necessary to examine the relationship with other biophysical variables, such as chlorophyll, nitrogen, water content, and biomass.

Detecting Phenology Using MODIS Vegetation Indices and Forest Type Map in South Korea (MODIS 식생지수와 임상도를 활용한 산림 식물계절 분석)

  • Lee, Bora;Kim, Eunsook;Lee, Jisun;Chung, Jae-Min;Lim, Jong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.267-282
    • /
    • 2018
  • Despite the continuous development of phenology detection studies using satellite imagery, verification through comparison with the field observed data is insufficient. Especially, in the case of Korean forests patching in various forms, it is difficult to estimate the start of season (SOS) by using only satellite images due to resolution difference. To improve the accuracy of vegetation phenology estimation, this study reconstructed the large scaled forest type map (1:5,000) with MODIS pixel resolution and produced time series vegetation phenology curves from Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from MODIS images. Based on the field observed data, extraction methods for the vegetation indices and SOS for Korean forests were compared and evaluated. We also analyzed the correlation between the composition ratio of forest types in each pixel and phenology extraction from the vegetation indices. When we compared NDVI and EVI with the field observed SOS data from the Korea National Arboretum, EVI was more accurate for Korean forests, and the first derivative was most suitable for extracting SOS in the phenology curve from the vegetation index. When the eight pixels neighboring the pixels of 7 broadleaved trees with field SOS data (center pixel) were compared to field SOS, the forest types of the best pixels with the highest correlation with the field data were deciduous forest by 67.9%, coniferous forest by 14.3%, and mixed forest by 7.7%, and the mean coefficient of determination ($R^2$) was 0.64. The average national SOS extracted from MODIS EVI were DOY 112.9 in 2014 at the earliest and DOY 129.1 in 2010 at the latest, which is about 0.16 days faster since 2003. In future research, it is necessary to expand the analysis of deciduous and mixed forests' SOS into the extraction of coniferous forest's SOS in order to understand the various climate and geomorphic factors. As such, comprehensive study should be carried out considering the diversity of forest ecosystems in Korea.

Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD (GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석)

  • Kim, Sang-Min;Yoon, Jongmin;Moon, Kyung-Jung;Kim, Deok-Rae;Koo, Ja-Ho;Choi, Myungje;Kim, Kwang Nyun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.451-463
    • /
    • 2018
  • The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.