• Title/Summary/Keyword: 탐사 방법론

Search Result 142, Processing Time 0.021 seconds

Generation of Pseudo Porosity Logs from Seismic Data Using a Polynomial Neural Network Method (다항식 신경망 기법을 이용한 탄성파 탐사 자료로부터의 유사공극률 검층자료 생성)

  • Choi, Jae-Won;Byun, Joong-Moo;Seol, Soon-Jee
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.665-673
    • /
    • 2011
  • In order to estimate the hydrocarbon reserves, the porosity of the reservoir must be determined. The porosity of the area without a well is generally calculated by extrapolating the porosity logs measured at wells. However, if not only well logs but also seismic data exist on the same site, the more accurate pseudo porosity log can be obtained through artificial neural network technique by extracting the relations between the seismic data and well logs at the site. In this study, we have developed a module which creates pseudo porosity logs by using the polynomial neural network method. In order to obtain more accurate pseudo porosity logs, we selected the seismic attributes which have high correlation values in the correlation analysis between the seismic attributes and the porosity logs. Through the training procedure between selected seismic attributes and well logs, our module produces the correlation weights which can be used to generate the pseudo porosity log in the well free area. To verify the reliability and the applicability of the developed module, we have applied the module to the field data acquired from F3 Block in the North Sea and compared the results to those from the probabilistic neural network method in a commercial program. We could confirm the reliability of our module because both results showed similar trend. Moreover, since the pseudo porosity logs from polynomial neural network method are closer to the true porosity logs at the wells than those from probabilistic method, we concluded that the polynomial neural network method is effective for the data sets with insufficient wells such as F3 Block in the North Sea.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

Accuracy Improvement of Surveying & Mapping for Seabed Facilities (해저시설물 조사성과의 정확도 제고)

  • Kim, June-Sik;Choi, Yun-Soo;Park, Sun-Mi;Kang, Moon-Kwon
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.103-115
    • /
    • 2009
  • Recently, the seabed facility is gradually being increased based on the development of harbor and the coastal area. However, the comparison between the survey data with the chart still shows the significant differences leading to various disasters over sea accident. Therefore, in this study, the investigation on the seabed facility were performed in 5 areas through an accuracy analysis using an up-to-date surveying equipment(MBES, SSS and SBP). Based on the study more systematic management on the seabed facility, more accurate method on the surveying, and some considerations on the related policies are suggested. Through the study, we obtained more accurate measurement on depth and seabed piping forms in Jakdo and Pyong-tack, on sunken ship in a Mok-po, on seabed crater in Je-ju. In addition, it was possible to present the method for the construction of information infra and a connection with the seabed facility. The criteria on the equipment's specification, surveying method and procedures are set by the experiments and the investigation and surveying accuracy on the seabed facilities are also suggested.

  • PDF

A News Video Mining based on Multi-modal Approach and Text Mining (멀티모달 방법론과 텍스트 마이닝 기반의 뉴스 비디오 마이닝)

  • Lee, Han-Sung;Im, Young-Hee;Yu, Jae-Hak;Oh, Seung-Geun;Park, Dai-Hee
    • Journal of KIISE:Databases
    • /
    • v.37 no.3
    • /
    • pp.127-136
    • /
    • 2010
  • With rapid growth of information and computer communication technologies, the numbers of digital documents including multimedia data have been recently exploded. In particular, news video database and news video mining have became the subject of extensive research, to develop effective and efficient tools for manipulation and analysis of news videos, because of their information richness. However, many research focus on browsing, retrieval and summarization of news videos. Up to date, it is a relatively early state to discover and to analyse the plentiful latent semantic knowledge from news videos. In this paper, we propose the news video mining system based on multi-modal approach and text mining, which uses the visual-textual information of news video clips and their scripts. The proposed system systematically constructs a taxonomy of news video stories in automatic manner with hierarchical clustering algorithm which is one of text mining methods. Then, it multilaterally analyzes the topics of news video stories by means of time-cluster trend graph, weighted cluster growth index, and network analysis. To clarify the validity of our approach, we analyzed the news videos on "The Second Summit of South and North Korea in 2007".

A Study on Development of Technology System for Deep-Sea Unmanned Underwater Robot of S. Korea analysed by the Application of Scenario Planning (한국형 수중로봇시스템의 기술개발연구 - 시나리오플래닝 적용으로 -)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.27-40
    • /
    • 2013
  • This study is about development of technology system for an advanced deep-sea unmanned underwater robot of S. Korea analysed by the application of scenario planning. It was developed a 6000m class next-generation deep-sea unmanned underwater vehicle(or robot, UUV) system, soonly ROV 'Hemire' and Depressor 'Henuvy' in 2006 at S. Korea and motion control, adaptive control algolithm, a work-space manipulator control algolithm, especially the underwater inertial-acoustic navigation system robust to initial errors and sensor failures. But there are remained matters on position tracking of the USBL, inertial-acoustic navigation system, attitude sensor, designed sonar sensors. So this study suggest the new idea for settle the matters and then this idea help the development of the underwater inertial-acoustic navigation system robust to initial errors and sensor failures, such as acoustic signal drop-out, by modifying the error covariance of the failed sonar signal when drop-out occurs. As a result, the future policy for deep-sea unmanned underwater robot of S. Korea is to further spur the development of new technology and more improvement of the technology level for deep-sea unmanned underwater robot system with indicator and imaginary wall as external device.

Podiatric Clinical Diagnosis using Decision Tree Data Mining (결정트리 데이터마이닝을 이용한 족부 임상 진단)

  • Kim, Jin-Ho;Park, In-Sik;Kim, Bong-Ok;Yang, Yoon-Seok;Won, Yong-Gwan;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.28-37
    • /
    • 2011
  • With growing concerns about healthy life recently, although the podiatry which deals with the whole area for diagnosis, treatment of foot and leg, and prevention has been widely interested, research in our country is not active. Also, because most of the previous researches in data analysis performed the quantitative approaches, the reasonable level of reliability for clinical application could not be guaranteed. Clinical data mining utilizes various data mining analysis methods for clinical data, which provides decision support for expert's diagnosis and treatment for the patients. Because the decision tree can provide good explanation and description for the analysis procedure and is easy to interpret the results, it is simple to apply for clinical problems. This study investigate rules of item of diagnosis in disease types for adapting decision tree after collecting diagnosed data patients who are 2620 feet of 1310(males:633, females:677) in shoes clinic (department of rehabilitation medicine, Chungnam National University Hospital). and we classified 15 foot diseases followed factor of 22 foot diseases, which investigated diagnosis of 64 rules. Also, we analyzed and compared correlation relationship of characteristic of disease and factor in types through made decision tree from 5 class types(infants, child, adolescent, adult, total). Investigated results can be used qualitative and useful knowledge for clinical expert`s, also can be used tool for taking effective and accurate diagnosis.

Evaluating Vulnerability to Snowfall Disasters Using Entropy Method for Overlapping Distributions of Vulnerable Factors in Busan, Korea (취약인자의 엔트로피 기반 중첩 분석을 이용한 부산광역시의 적설재해 취약지역 등급 평가)

  • An, ChanJung;Park, Yongmi;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.217-229
    • /
    • 2020
  • Recently, weather changes in Korea have intensified due to global warming, and the five major natural disasters that occur mostly include heavy rains, typhoons, storms, heavy snow, and earthquakes. Busan is vulnerable to snow disaster, given that the amount of natural disaster damage in Busan accounts for more than 50% of the total amount in the entire metropolitan cities in Korea, and that the Busan area includes many hilly mountains. In this study, we attempted to identify vulnerable areas for snowfall disasters in Busan areas using the geographic information system (GIS) with the data for both geographical and anthropogenic characteristics. We produced the maps of vulnerable areas for evaluating factors that include altitude, slope, land cover, road networks, and demographics, and overlapped those maps to rank the vulnerability to snowfall disasters as the 5th levels finally. To weight each evaluating factor, we used an entropy method. The riskiest areas are characterized by being located in mountainous areas with roads, including Sansung-ro in Geumjeong-gu, Mandeok tunnel in Buk-gu, Hwangnyeongsan-ro in Suyeong-gu, and others, where road restrictions were actually enforced due to snowfall events in the past. This method is simple and easy to be updated, and thus we think this methodology can be adapted to identify vulnerable areas for other environmental disasters.

Application of Satellite Data Spatiotemporal Fusion in Predicting Seasonal NDVI (위성영상 시공간 융합기법의 계절별 NDVI 예측에서의 응용)

  • Jin, Yihua;Zhu, Jingrong;Sung, Sunyong;Lee, Dong Kun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Fine temporal and spatial resolution of image data are necessary to monitor the phenology of vegetation. However, there is no single sensor provides fine temporal and spatial resolution. For solve this limitation, researches on spatiotemporal data fusion methods are being conducted. Among them, FSDAF (Flexible spatiotemporal data fusion) can fuse each band in high accuracy.In thisstudy, we applied MODIS NDVI and Landsat NDVI to enhance time resolution of NDVI based on FSDAF algorithm. Then we proposed the possibility of utilization in vegetation phenology monitoring. As a result of FSDAF method, the predicted NDVI from January to December well reflect the seasonal characteristics of broadleaf forest, evergreen forest and farmland. The RMSE values between predicted NDVI and actual NDVI (Landsat NDVI) of August and October were 0.049 and 0.085, and the correlation coefficients were 0.765 and 0.642 respectively. Spatiotemporal data fusion method is a pixel-based fusion technique that can be applied to variousspatial resolution images, and expected to be applied to various vegetation-related studies.

Estimation of Aboveground Forest Biomass Carbon Stock by Satellite Remote Sensing - A Comparison between k-Nearest Neighbor and Regression Tree Analysis - (위성영상을 활용한 지상부 산림바이오매스 탄소량 추정 - k-Nearest Neighbor 및 Regression Tree Analysis 방법의 비교 분석 -)

  • Jung, Jaehoon;Nguyen, Hieu Cong;Heo, Joon;Kim, Kyoungmin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.651-664
    • /
    • 2014
  • Recently, the demands of accurate forest carbon stock estimation and mapping are increasing in Korea. This study investigates the feasibility of two methods, k-Nearest Neighbor (kNN) and Regression Tree Analysis (RTA), for carbon stock estimation of pilot areas, Gongju and Sejong cities. The 3rd and 5th ~ 6th NFI data were collected together with Landsat TM acquired in 1992, 2010 and Aster in 2009. Additionally, various vegetation indices and tasseled cap transformation were created for better estimation. Comparison between two methods was conducted by evaluating carbon statistics and visualizing carbon distributions on the map. The comparisons indicated clear strengths and weaknesses of two methods: kNN method has produced more consistent estimates regardless of types of satellite images, but its carbon maps were somewhat smooth to represent the dense carbon areas, particularly for Aster 2009 case. Meanwhile, RTA method has produced better performance on mean bias results and representation of dense carbon areas, but they were more subject to types of satellite images, representing high variability in spatial patterns of carbon maps. Finally, in order to identify the increases in carbon stock of study area, we created the difference maps by subtracting the 1992 carbon map from the 2009 and 2010 carbon maps. Consequently, it was found that the total carbon stock in Gongju and Sejong cities was drastically increased during that period.

Stochastic numerical study on the propagation characteristics of P-Wave in heterogeneous ground (지반의 비균질성이 탄성파 전파 특성에 미치는 영향에 대한 추계론적 수치해석 연구)

  • Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.13-24
    • /
    • 2013
  • Various elastic wave-based site investigation methods have been used to characterize subsurface ground because the dynamic properties can be correlated with various geotechnical parameters. Although the inherent spatial variability of the geotechnical parameters affects the P-wave propagation characteristics, ground heterogeneity has not been considered as an influential factor. Thus, the effect of heterogeneous ground on the travel-time shift and wavefront characteristics of elastic waves through stochastic numerical analyses is investigated in this study. The effects of the relative correlation lengths and relative propagation distances on the travel-time shift of P-waves considering various intensities of ground heterogeneity were investigated. Heterogeneous ground fields of stiffness (e.g., the coefficient of variation = 10 ~ 40%) were repeatedly realized in numerical finite difference grids using the turning band method. Monte Carlo simulations were undertaken to simulate P-wave propagation in heterogeneous ground using a finite difference method-based numerical approach. The results show that the disturbance of the wavefront becomes more significant with stronger heterogeneity and induces travel-time delays. The relative correlation lengths and propagation distances are systematically related to the travel-time shift.