• Title/Summary/Keyword: 탈황공정

Search Result 131, Processing Time 0.031 seconds

A Review of Desulfurization Technology using Limestone in Circulating Fluidized Bed Boiler Type Power Plant (유동층보일러형 화력발전소의 석회석 활용 탈황기술 연구동향)

  • Baek, Chul-Seoung;Seo, Jun-Hoyung;Ahn, Ji-Whan;Han, Chon;Cho, Kae-Hong
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.3-14
    • /
    • 2015
  • This study investigated that status of domestic and international furnace desulfurization and desulfurization characteristics of limestone for fluidized bed use depending on the technology for CFBC one of the CCPs. Limestone-based desulfurizing agent is one of the superior elements which are optimal at around $850-950^{\circ}C$ on high temperature desulfurization. And effectiveness of desulfurization process can be determined by the desulfurization experiment method such as diffusion reaction of the diaphragm of the absorber surface, the size of the particles, the pores of the quantity, size and structure. And, desulfurization efficiency depending on geological and crystallographic properties and calcination process of limestone needs additional research in the future.

Environmental analysis on Waste Catalyst Recycling Technology using Life Cycle Assessment (전과정평가를 통한 폐촉매 재활용 기술의 환경성 분석)

  • Ahn, Joong Woo;Pak, Jong-Jin
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.64-73
    • /
    • 2018
  • This study aims to analysis the environmental impact on waste catalyst recycling technology using entire life cycle assessment. Environmental impacts consist of the five categories of impacts: global warming, resource depletion, acidification, eutrophication, and photochemical oxide production. The waste catalyst recycling presently have a GWP 3.53 ton $CO_2$ equivalent/ton, a ADP 0.017 ton Sb equivalent/ton, a AP 0.051 $SO_2$ equivalent/ton, a EP 0.0092 $PO{_4}^{3-}$ equivalent/ton, a 0.0019 ton $C_2H_4$ equivalent/ton. The smelting reduction process is the greatest contributor to all categories of environmental impacts in waste catalyst recycling. Electricity used in the smelting reduction process is the major contributor of all impact categories.

Effect of Operating Parameters on Microbial Desulfurization of Coal by Acidithiobacillus ferrooxidans. (Acidithiobacillus ferrooxidans에 의한 생물학적 석탄탈황에 미치는 조업인자의 영향)

    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.400-407
    • /
    • 2003
  • In microbial coal desulfurization process (MCDP) by using Acidithiobacillus ferrooxidans, the effect of process variables on pyritic sulfur removal efficiency has been investigated. The inhibitory effect of toxic materials contained in coal matrix on the activity of desulfurizing bacteria have been evaluated in coal extracts, and the results showed that the method was useful to evaluate the applicability of a coal which is to be desulfurization to MCDP. The removal efficiency increased with decreasing particle size and decreases with increasing pulp density, but has no significant influence of particle size and pup densities at high pulp densities over 20 wt%. The mass transfers of gaseous nutrients such as oxygen and carbon dioxide into coal slurry with various pulp densities and coal particle size has been studied in an airlift bioreactor. Mass transfer coefficient was independent of pulp density in coal slurry with fine particle below 175 $\mu\textrm{m}$, but significantly decreased with increasing pulp density over 225 $\mu\textrm{m}$. The coal particles over 575 $\mu\textrm{m}$ were significantly settled to the bottom of bioreactor resulting in poor mixing. Considering mass transfer, pulp density and coal mixing, an optimal size of coal particle for the microbial coal desulfurization process seems to be about 500 $\mu\textrm{m}$.

Numerical Analysis for Improving of SOx Removal Efficiency in the DSI(Dry Sorbent Injection Technique) of FGD System(I) (배연탈황 공정 중 DSI 공법의 탈황효율 향상을 위한 전산 유체 역학적 연구(I))

  • Chung, Jin-Do;Kim, Jang-Woo;Kim, Byung-Hwan;Park, Young-Moon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • The aim of this study is to research applicable possibility or Dry Sorbent Injection Technique(DSI) in sox removal process using Computational Fluid Dynamics(CFD) software package. It will be applied for 500MW in capacity coal-fired thermal power plant operated by South Korea N. Power Co., Ltd. The DSI process is adapted between a preheater and an EP process in the technological assembly. The numerical analysis performs in predicting and optimizing of DSI process's characteristics, which consists of structure of duct, position of injection nozzles, injection speed, and dispersion of sorbent. Computing results are shown that degree of sorbent dispersion depends on structure of duct and position of injection nozzles strongly. The highest dispersion efficiency was obtained when we set a Lobed-plate inside the duct and 6 injection nozzles on the duct(4 injection nozzles at the corners and 2 injection nozzles on upper and under walls as a rectangle duct shape). We also know that change of injection speed of sorbent doesn't have an large effect on the sorbent dispersion but it can effect to drop pressure.

Trends in Research and Technical Development of Sorbents for Hot Gas Desulfurization for H2S Removal (H2S 제거를 위한 고온건식 탈황제의 연구 및 기술개발동향)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Kwon, Woo Tech;Ahn, Ji-Whan;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.14-27
    • /
    • 2016
  • Theoretical reviews of integrated gasification combined cycle one of the clean coal technologies and trends in the study and technology development for high temperature desulfurization sorbents were investigated. Reactivity, durability and abrasion resistance is an important key for development of high temperature desulfurization sorbents, the kind of things include calcium, zinc, manganese, iron and copper-based sorbents. Current status of high temperature desulfurization sorbents, manufacturing techniques of zinc-based sorbent in advanced countries has commercialized. In case of Korea, various research studies are underway to commercialize the Zn and non Zn-based high temperature desulfurization sorbents to cheaper and superior capability using various supports.

Microbial Desulfurization of a Bituminous Coal by Iron-Oxidizing Bacteria Thiobacillus ferooxidans (철산화 박테리아 Thiobacillus ferrooxidans에 의한 역청탄의 생물학적 탈황)

  • 류희욱
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.238-245
    • /
    • 1996
  • Microbial desulfurization characterlstics of a bituminous coal have been determined by using Thiobacillus ferrooxidans. The effects of process variables (such as coal pulp density, particle size and addition of surfactants) on pyrite removal have been investigated in both shake and airlift-bioreactor culture experiments. In shake experiments, pyrite could be removed over 78% for pulp densifies below 20% (w/v) and removed below 40% for pulp densities over 30% (w/v) in 8 days. Pyrite removal decreased with increasing pulp densities, and it also decreased sharply with increasing particle sizes. In airlift bioreactor experiments, pyrite at 50% (w/v) pulp density could be removed about 50%. Its value is much higher than 15% at the same pulp density in a shake experiment. With addition of surfactants, pyrite removal was enhanced in shake experiments significantly, whereas it was slightly decreased in an airlift bioreactor experiment.

  • PDF

Modeling of Wet Flue Gas Desulfurization Process for Utilization of Low-Grade Limestone (저품위 석회석 활용을 위한 습식 배연탈황 공정 모델링 연구)

  • Lim, Jonghun;Choi, Yeongryeol;Kim, Geonyeol;Song, Hojun;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.743-748
    • /
    • 2019
  • This study focuses on the simulation of wet flue gas desulfurization process for improving the production of gypsum by the utilization of low-grade limestone. At present, high-grade limestone with a $CaCO_3$ content of 94% is used for producing merchantable gypsum. In modeling process, a lot of reactions are considered to develop model. First, the limestone dissolution is simulated by RSTOIC model. Second, SOx absorption and crystallization is used by RCSTR model. Finally the gypsum is separated by using SEPERATORS model. Modeling steps make it easy to reflect further side reactions and physical disturbances. In optimization condition, constraints are set to 93% purity of gypsum, 94% desulfurization efficiency, and total use of limestone at 3710 kg/hr. Under these constraints, the mass flow of low-grade limestone was maximized. As a result, the maximum blending quantity of low-grade limestone for 2,100 kg of high-grade limestone that satisfies constraints is about 1,610 kg.

Reaction Characteristics of Desulfurization Sorbents for Warm Syngas Cleanup (석탄 합성가스 정제용 탈황제의 흡수/재생 온도 변화에 따른 황흡수 특성)

  • Baek, Jeom-In;Ryu, Jungho;Lee, Joong Beom;Eom, Tae-Hyoung;Lee, Kisun;Wi, Yong-Ho;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.107.1-107.1
    • /
    • 2010
  • 고체 흡수제를 이용한 석탄합성가스 중의 황제거 기술은 습식 스크러빙 방식에 비해 고온에서 운전가능하므로 석탄가스화복합발전의 효율 향상을 가져올 수 있다. 고체탈황제는 서로 연결된 두 개의 유동층 반응기를 순환하면서 흡수탑에서는 합성가스 중의 $H_2S$로부터 황을 흡수하고 재생탑에서는 공기 중의 산소와 흡수된 황이 반응하여 $SO_2$를 배출하고 재생된다. 따라서 고체 황 흡수제는 유동층 공정에 응용가능한 물성과 함께 높은 황흡수능과 빠른 반응성이 요구된다. 본 연구에서는 기존 개발된 고체 탈황제가 가졌던 소성시 수축 현상, 낮은 내마모도 등을 개선하기 위해 지지체 조성을 변경하여 개발한 분무성형 탈황제의 흡수 재생 온도에 따른 황흡수 특성 변화를 조사하였다. $H_2S$ 1 vol. %를 함유한 모사 합성가스를 이용하여 흡수온도 450, $500^{\circ}C$, 재생온도 500, 550, 600, $650^{\circ}C$에서 황 흡수능을 열중량분석기를 이용하여 측정하였다. 개발된 흡수제는 유동층 공정 적용에 적합한 훌륭한 물성(형상, 밀도, 강도 등)과 함께 $500^{\circ}C$ 흡수와 $650^{\circ}C$ 재생을 기준으로 10 wt% 이상의 높은 황흡수능을 보여주었다. 흡수온도 변화는 황 흡수능 변화에 큰 영향을 미치지 않았으나, 재생온도가 $600^{\circ}C$ 이하인 경우 황흡수능이 5 wt% 이하로 크게 떨어져 재생온도를 $650^{\circ}C$ 이상 유지시키는 것이 중요함을 알 수 있었다.

  • PDF