• Title/Summary/Keyword: 탈선

Search Result 180, Processing Time 0.023 seconds

Tilting Train-induced Roadbed Response on the Conventional Line (틸팅열차 주행시 기존선 흙 노반의 응답특성)

  • Koh, Tae-Hoon;Kwak, Yeon-Suk;Hwang, Seon-Keun;SaGong, Myung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.433-441
    • /
    • 2011
  • It is a fact that the straightening of track alignment is one of the undoubted ways to improve the train speed on conventional lines, while that requires huge investment resources. Therefore, the operation of a tilting train as well as the minimum improvement of track is suggested as an effective and economical alternative way for the speed-up of conventional lines. Since a driving mechanism of tilting train is different from those of existing trains, in order to make sure its operation safety and stability on conventional line, the performance of track and roadbed must be preferentially evaluated on the conventional line. Furthermore, it is necessary to estimate the tilting-train-induced roadbed response in detail since the roadbed settlement can lead to the track deformation and even derailment. In this research, the patterns of wheel load and lateral force were monitored and analyzed through the field tests, and the derailment coefficient and degree of wheel off-loading were calculated in order to evaluate the tilting train running safety depending on the running speeds (120km~180km) on the conventional line. Moreover, roadbed pressure, settlement and acceleration were also observed as tilting-train-induced roadbed responses in order to estimate the roadbed stability depending on the running speeds. Consequently, the measured derailment coefficient and degree of wheel off-loading were satisfied with their own required limits, and all of the roadbed responses were less than those of existing high-speed train (KTX) over an entire running speed range considered in this study. As a result of this study, the tilting train which will be operated in combination with existing trains is expected to give no adverse impact on the conventional line even with its improved running speed.

The Derailment Safety Estimation of DMT Freight for Real Track Condition (실제 선로조건에 따른 DMT 화차의 탈선안전도 평가)

  • Lee, Jong-Seong;Eom, Beom-Gyu;Lee, Seung-Il;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.830-835
    • /
    • 2011
  • DMT Freight is judged that economic performance is good because can increase cargoes than existing freight. However, the existing freight cars, each with a different balance to the body structure is bogie because the vibrations may occur. Thus, by minimizing vibration over the existing freight securing the safety of the driving if you will not have major problems in cargoes. In this study, multi-body dynamic analysis tool, VI-Rail using the actually Gyeongbu Railroad line and an empty, full freight condition include curve radius, track irregularity, cent. DMT freight of the derailed wagons were assessed for safety analysis. Full and empty freight conditions for parity in the Gyeongbu Railroad line(Dongdaegoo ${\leftrightarrow}$Gyungsan) derailment safety analysis, such as derailment safety coefficient and the radius wheel road decrement, echoing the curve and the orbit is affected by the irregularity was found. Full freight condition than the empty conditions showed a significant derailment safety. Overall, the limits of derailment coefficient (Q/P=0.8) and wheel road decrement limits (${\Delta}P/P=0.6$) is less safe with me confirmed that the derailment safety.

  • PDF

A Study on the Design of Small-Scaled Derailment Simulator considering Similarity Rules (상사법칙을 고려한 소형탈선시뮬레이터 설계에 관한 연구)

  • Eom, Beom-Gyu;Lee, Se-Yong;Oh, Se-Been;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1085-1091
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. This paper presents the design of the small-scaled derailment simulator and the example design case of a small scale bogie. The simulator could be used in the study about the effect of diverse parameters such as attack angle, wheelbase and cant on dynamic behavior of the bogie and the safety parameter such as derailment coefficient and critical speed.

  • PDF

A Running Stability Test of 1/5 Scaled Bogie Using Small Scale Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2600-2608
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. As this paper, To predict the dynamic behavior of railway vehicle, we studied running stability test of 1/5 scaled bogie that similarity laws is applied using small scale derailment simulator. For the operation of the small scale derailment simulator, it is required to investigate the performance and characteristics of the system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying of the test results and understanding of the physical behavior of the dynamic system comprising the small scale bogie and the simulator.

  • PDF

A Running Stability Test of 1/5 Scaled Bogie using Small Scale Derailment Simulator (소형탈선시뮬레이터 상에서의 1/5 축소대차의 안정성 해석)

  • Eom, Beom-Gyu;Lee, Se-Yong;Lee, Young-Yeob;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1905-1913
    • /
    • 2011
  • The dynamic characteristic of bogie that is driving system of railway vehicle is very important regarding decision of vehicle characteristics as running safety and comport. The dynamic characteristic test of bogie is tested on full size in place on field testing on track. But, the testing on the full size caused many problems. To overcome these problem by full size test, the Railway Safety Research Center in Seoul National University of Science & Technology developed 1/5 scale size of small scale derailment simulator and is currently testing running stability of 1/5 scaled bogie. Also To take effectively advantage of running stability test using small scale derailment simulator in actuality design and reliability estimation, it is necessary comparison and examination with field test and theoretical analysis result In this paper. to achieve running stability analysis of 1/5 scaled bogie on small scale derailment. the program using MATLAB that is fast compose and analysis the motion equation of Saemaul power bogie is developed. It is achieved analysis according to various specification (weight, size, suspension, etc..) and is evaluated corelation between test result and dynamic characteristic of actual railway vehicle.

  • PDF

The Design of Monitoring System to Optimize Points Inspection Intervals (선로전환기 점검주기 최적화를 위한 모니터링시스템 설계)

  • Lim, In-Taek;Park, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3444-3449
    • /
    • 2013
  • The control module controlling points has become high-tech. but the introduction of relevant company's inspection intervals and methods, and the adoption of the way which is used in relay interlock system became the cause of a failure by excessive and incorrect maintenance. The Human error in failure recovery process can cause vital accidents including train derailment, the points monitoring system could prevent this problem by monitoring points' operation condition in real time. After conducting the changed inspection intervals that applied the results of the criticality of each failure type, MTBF, MTTR, availability, maintainer's opinion, the work became simplified, and, the failure did not occur for 4 consecutive years in contrast to the previous annual average of 11 failures.

Safety Security Method and Onboard Design for Inter-operation between CBTC, ATC Train Control System (CBTC, ATC 열차제어 시스템 간 상호운행을 위한 차상장치 설계 및 안전 확보 방안)

  • Lee, Jae-Ho;Oh, Sea-Hwa;Park, Jong-Moon;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.875-882
    • /
    • 2015
  • Recently, An introduction of communication based train control system both into greenfield and brownfield of urban transit network has been actively reviewed. However, since a number of line sections and rolling stock depots tends to be constructed based on track circuit for various reasons, necessity of inter-operation between two distinct train control system (CBTC, ATC) increases. Therefore, we propose a design of on-board signalling device that allows inter-operation of CBTC and ATC lines and a method to secure safe connection between these two lines without derailing point machine.

Measurement of Aerodynamic Loads on Railway Vehicles Under Crosswind (측풍 시 철도차량에 가해지는 공기역학적 하중의 측정)

  • Kwon, Hyeok-Bin;You, Won-Hee;Cho, Tae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.91-98
    • /
    • 2011
  • In this study, we measure the aerodynamic forces acting on an AREX train in a crosswind by wind tunnel testing. A detailed test model scaled to 5% of the original and including the inter-car, under-body, and the bogie systems was developed. The aerodynamic forces on the train vehicles have been measured in a 4 m $\times$ 3 m test section of the subsonic wind tunnel located in Korea Aerospace Research Institute (KARI). The aerodynamic forces and moments of the train model on two different track models have been plotted for various yaw angles, and the characteristics of the aerodynamic coefficients have been analyzed at the experimental conditions.

A study on the Prevention of Malfunction by Developing Mechanical Sensing device of Railway Point (철도 선로전환기 기계식 밀착검지기 개발을 통한 장애경감에 관한 연구)

  • Yu, Jae-Hyeon;Sin, Myeong-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.404-409
    • /
    • 2007
  • To change rail tracks from main track to another track, it needs some device that is called turnout point. If the point which is composed of accurate parts and complex sensors does not work, serious problems will be arisen. However, there serious problems by the failure of the point. In this paper, after analyzing the failures of the conventional points, a new point is presented. The proposed point is not affected by surge caused by lighting.

  • PDF

Efficient Optimization of the Suspension Characteristics Using Response Surface Model for Korean High Speed Train (반응표면모델을 이용한 한국형 고속전철 현가장치의 효율적인 최적설계)

  • Park, C.K.;Kim, Y.G.;Bae, D.S.;Park, T.W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.461-468
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have used a surrogate model that has a regression model performed on a data sampling of the simulation. In general, metamodels(surrogate model) take the form y($\chi$)=f($\chi$)+$\varepsilon$, where y($\chi$) is the true output, f($\chi$) is the metamodel output, and is the error. In this paper, a second order polynomial equation is used as the RSM(response surface model) for high speed train that have twenty-nine design variables and forty-six responses. After the RSM is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called VMM(variable matric method) This paper shows that the RSM is a very efficient model to solve the complex optimization problem.