• Title/Summary/Keyword: 탈기관

Search Result 3, Processing Time 0.018 seconds

A look at rooftop waterproofing methods that combine a circular adhesive insulated composite duplex exposure repellent with a airvent (원형 접착 절연형의 복합 복층형 노출 방수제와 탈기관을 결합한 옥상 방수 공법에 관한 고찰)

  • KIM, Yeong-Seok;JEON, Sang-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.236-237
    • /
    • 2021
  • In the waterproofing of the rooftop of reinforced concrete buildings, it is difficult to solve perfectly according to the proficiency of waterproofing materials, methods, and mechanics. Therefore, this study applies a Tricot Fabric Mesh to the behavior of the bottom concrete. In addition, it responds to the behavior of the concrete cracking, and the waterproofing and protective layer has developed a method to provide convenience for rooftop floor use by adhesion between the base and the waterproof layer with the use of high viscosity urethane to effectively move the surface deformation and surface vapor and install a airvent device on the wall.

  • PDF

Characteristics of Air Stripping for Recycling of Ammonia in Aqueous Solutions (수용액중 암모니아 Recycling을 위한 Air Stripping 특성에 관한 연구)

  • Lee Hwa-Yaung;Oh Jong-Kee;Kim Sung-Gyu
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.31-37
    • /
    • 2003
  • A study on the characteristics of ammonia desorption from aqueous solutions has been performed by air stripping as the first stage of ammonia recycling for the preparation of ammonium sulfate from it. For air stripping experiments, a stripping column made with acrylic tube of 40 mm diameter was employed and compressed air was injected into solutions through air sparger equipped at the bottom of stripping column. As a result of experiments, the stripping efficiency was increased with the aqueous pH and it was found that the appropriate pH for air stripping of ammonia was between pH 10 and 12. As far as the effect of air flow rate on ammonia stripping was concerned, ammonia stripping was not proportional to the air flow rate although it was affected by the air flow rate to some extent. Moreover, when more than 20 cm of water height was maintained, total ammonia desorbed from solution was not varied with the water height. Stripping temperature was also found to play an important role in ammonia desorption and about 90fo of initial ammonia was desorbed in 14 hours at pH 12.8 and at $60^{\circ}C$ Finally, it was believed that stripping temperature as well as the aqueous pH was one of the most important factors in air stripping of ammonia.

Assessment of the Struvite Crystallization Process for Phosphate Removal and Recovery from a Sludge Treatment System of a Domestic Wastewater Treatment Plant (하수처리장 슬러지처리 계통에서의 인 제거 및 회수를 위한 Struvite 결정화 공정 적용성 평가)

  • Baek, Seung Ryong;Lee, Byung Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.462-469
    • /
    • 2017
  • Eutrophication and shortage of phosphate ore raise the necessity of phosphate removal and recovery from wastewater treatment plants. Especially, a sludge treatment system containing highly concentrated phosphate should be targeted for phosphate removal and recovery. This study thus aimed to evaluate the capability of the struvite crystallization process for phosphate removal and recovery from a sludge treatment system of a wastewater treatment plant. Analysis on phosphate concentrations and masses in the sludge treatment system revealed that digested sludge and centrate have phosphate concentrations and masses, high enough to adopt the struvite crystallization process. Chemical equilibrium modeling indicated that the struvite crystallization reaction substantially occurred with pH higher than 8 and $Mg^{2+}$ concentration 1.2 times higher than its theoretical requirement. A series of batch tests with digested sludge and centrate indicated that the phosphate removal reaction by struvite crystallization followed a first-order kinetics and reached over 80% removal efficiency at equilibrium. Aeration in the batch tests was found to purge $CO_2$ in sludge or centrate and increase pH up to 8.7, without adding NaOH. Thus, we concluded that the struvite crystallization process could be an efficient and economical process for phosphate removal and recovery from a wastewater treatment plant.