• 제목/요약/키워드: 탄화수소 생성물

검색결과 106건 처리시간 0.021초

Stenotrophomons maltophilia에 의한 방향족 화합물의 생분해

  • 최창석;박진희;김영식;이태진
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.71-74
    • /
    • 2002
  • 다고리방향족 탄화수소를 페놀에 적응된 미생물을 이용하여 분해하고자 하였다. 분리된 Stenotrophomons maltophilia는 나프탈렌과 페난스렌을 탄소원 및 에너지원으로 이용하였으며 10mg/$\ell$의 나프탈렌과 0.9mg/$\ell$의 페난스렌이 완전히 분해되는데 지체기후 약 2일과 3일이 소요되었다. 나프탈렌, 페난스렌의 분해시 중간생성물로 chromatography 상에 새로운 피크들이 생성되었으며, 이러한 중간생성물을 파악하여 다고리 방향족 탄화수소의 분해경로를 모색하고자 하였다.

  • PDF

Biodegradation of PAHs in anaerobic conditions

  • 우승한;임경희;박종문
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.153-157
    • /
    • 2004
  • 다양한 혐기성 조건에서 다환방향족탄화수소(PAHs)로 오염된 토양의 미생물 분해 연구를 수행하였다. 대표적인 다환방향족탄화수소인 phenanthrene과 fluorene을 토양과 물에 오염시켜서 약 100일 동안 저감정도를 관찰하였고, 실제 다환방향족탄화수소로 오염된 현장 토양을 이용 혐기성하에서 다환방향족탄화수소의 생분해 가능성을 확인하였다. 미생물 접종원은 혐기성 조건에서 다환방향족탄화수소에 노출시킨 슬러리가 사용되었다. 황산염 환원조건, 질산염 환원조건, 메탄생성조건 등의 다양한 혐기성 조건에서 실험을 수행한 결과, 메탄생성조건 > 질산염 환원조건 > 황산염 환원조건의 순서로 분해가 잘 일어났다. 또한 현장오염토양의 경우 34일간 처리 후 메탄생성조건에서 최대 72%의 분해율을 보였다.

  • PDF

제올라이트와 분자체 촉매에서 메탄올 전환 반응의 기구 (Mechanism of Methanol Conversion over Zeolite and Molecular Sieve Catalysts)

  • 서곤;민병구
    • Korean Chemical Engineering Research
    • /
    • 제44권4호
    • /
    • pp.329-339
    • /
    • 2006
  • 원유가 급등으로 메탄올에서 저급 올레핀을 제조하는 공정에 대한 관심이 높아지고 있다. 제올라이트와 SAPO 분자체 촉매에서 메탄올의 탄화수소로 전환 반응을 저급 올레핀 생성 단계에 중점을 두고 고찰하였다. 구조가 명확한 중간체를 근거로 하는 직접(direct) 반응기구와 구조가 애매한 탄화수소 뭉치를 활성점으로 보는 탄화수소 활성체(hydrocarbonpool) 반응기구의 합리성을, 메탄올 전환 반응의 유도기간, 생성물의 선택성, 활성 저하 등과 연계지어 비교하였다. 탄화수소 활성체의 구조 규명과 메탄올 전환 반응에서 촉매 활성점으로서 기능에 대한 1999년 이후 연구 결과를 검토하였으며, 메탄올에서 저급 올레핀을 생산하는 공정에 대한 전망도 기술하였다.

Trickle Bed Reactor에서 Pt/Kieselguhr 촉매를 이용한 다환방향족 탄화수소 수소화 반응 (Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor)

  • 오승교;오서현;한기보;정병훈;전종기
    • 청정기술
    • /
    • 제28권4호
    • /
    • pp.331-338
    • /
    • 2022
  • 본 연구의 목적은 열분해연료유(pyrolysis fuel oil, PFO)에 포함된 다환 방향족 탄화수소(polycyclic aromatic hydro, PAHs) 수소화 반응용 촉매로서 Pt(1wt%)/Kieselguhr 비드 촉매 및 펠렛 촉매를 제조하는 것이다. Trickle-bed 반응기에서 PFO-cut 수소화 반응을 통한 포화 고리 화합물(saturated cyclic compound)의 수율을 최대화하기 위한 최적의 반응 온도 및 수소/PFO-cut 유량비는 각각 250℃와 1800으로 결정하였다. PFO-cut의 공간속도(LHSV)가 감소할수록 포화 고리 화합물의 수율이 증가하였다. 펠렛 촉매와 비드 촉매의 수소화 반응 성능 차이는 크지 않았다. Kieselguhr 지지체를 성형한 후에 Pt를 담지한 촉매(AI 촉매)가 kieselguhr 분말에 Pt를 담지한 후에 성형한 촉매(BI 촉매)에 비해 수소화 활성이 높았으며, 이러한 경향은 펠릿 촉매와 비드 촉매에서 공통적으로 나타났다. 이는 AI 촉매의 Pt 활성점 수가 BI 촉매 보다 많기 때문이다. 본 연구에서 제조한 촉매 중에서 AI법으로 제조된 펠렛 촉매가 제조된 촉매 중 반응 활성이 가장 우수한 것을 확인하였다. PFO-cut 수소화 반응 생성물 중 C8~C15 범위의 고리 화합물이 대부분을 차지했으며, C11 고리 화합물의 분포도가 가장 높았다. 수소화 반응과 더불어서 분해 반응도 함께 촉진되어 생성물의 탄소수 분포가 경질 탄화수소 쪽으로 이동함을 확인하였다.

열분해 반응기에서 1,1,2-trichloroethane의 분해특성과 Scale-up 설계를 위한 수치해석적 연구 (Study on the decomposition of 1,1,2-trichloroethane in a pyrolysis reactor and a numerical study for scale-up design)

  • 이채복;라승혁;강경태;김상용
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.417-418
    • /
    • 2002
  • 열분해는 독성이 강한 염화탄화수소의 처리뿐만 아니라 염화물을 효과적으로 제거하여 이들로부터 유용한 탄화수소를 얻을 수 있는 반응이다 Biomass에 열분해를 적용하여 가스상, 액상, 고상형태의 유동한 부산물로 전환시키고 있으며 현재 액상생성물은 외국에서 큰 주목을 받고 있는 부산물이다. 1,1,2-trichloroethane(TCE)는 독성이 강한 휘발성 유기화합물(VOC)이며 발암물질이다. (중략)

  • PDF