• Title/Summary/Keyword: 탄화물분석

Search Result 202, Processing Time 0.032 seconds

원자력용 316LN 스테인레스강의 탄화물 석출 거동

  • 오용준;류우석;윤지현;홍준화;국일현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.689-694
    • /
    • 1995
  • 원자력용 316LN 스테인레스강의 입계탄화물 석출거동에 미치는 질소 및 Ti, B의 미량원소 영향을 시차열분석기(DSC)와 투과전자현미경(TEM)을 이용하여 관찰하였으며, 이들 결과와 예민화 특성과의 관계성을 분석하였다. Ti과 B의 첨가는 316LN 강의 탄화물 석출온도를 높이며, 탄화물 석출에 필요한 활성화에너지 값은 미첨가강에 비해 높았다. TEM/EDX 분석결과, 예민화된 316 LN 강은 M$_{23}$C$_{6}$ 탄화물이 입계에 석출되며 입계에서 Cr 고같층이 관찰되었다. 반면 Ti 및 B 첨가강은 7$50^{\circ}C$, 20시간 열처리 조건에서도 거의 입계석출물이 존재하지 않았으며 일부 소량 존재하는 입계 석출물은 EDX 분석결과 Mo-rich 상인 Laves 상으로 분석되었다. DSC와 TEM 분석 결과는 Oxalic 시험 및 Modified Strauss 시험에 의한 입계 부시시험결과와 잘 일치하였고, Ti 및 B의 첨가는 Cr의 확산을 저지시켜 입계탄화물의 석출 및 성장을 저지하는 역할을 하며, 316LN 강의 예민화 특성을 양호하게 하였다.

  • PDF

Comparative Study on Adsorption Properties of Carbons Derived from Lignin and Polymer/Lignin Composite Precursors (리그닌 및 고분자/리그닌 복합소재 탄화 생성물의 흡착 특성 비교)

  • Young Soon Im;Ahyeon Jin;Sun Young Park;Mijung Kim;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.488-492
    • /
    • 2023
  • In this study, a carbon film derived from a polymer/lignin composite precursor was produced by a carbonization cycle with a controlled temperature profile. The feasibility of successful formation of the carbon film using the carbonization cycle was monitored. The adsorption behavior of the carbon film toward various molecules, such as nonpolar and polar organic molecules, and dyes was investigated using ultraviolet/visible (UV/Vis) spectroscopy compared with that of carbonized lignin. Cyclic voltammetry (CV) analysis proved that a robust carbon film was prepared by the carbonization cycle. It was also demonstrated that the carbonized lignin and carbon film showed adsorption capability toward all types of organic molecules, in particular organic dyes, owing to the carbonized lignin. This work provides important information for future relevant research.

Characteristics of Carbonization Residue from Cow and Chicken Manure (우분과 계분에 대한 탄화물의 에너지 특성)

  • Lee, Min-Seok;Kim, Jae-Kyung;Rhee, Seung-Whee
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.28-35
    • /
    • 2014
  • The basic properties of cow and chicken manure such as proximate analysis and element analysis were estimated and the comparison to energy characteristics of carbonization residue between cow and chicken manure was evaluated. The optimum carbonization condition of cow and chicken manure was decided by total heating value of carbonization residue which was expressed by multiplying low heating value by yield. The optimum carbonization conditions for carbonization time and temperature can be decided by 15 min, and $350^{\circ}C$ for chicken manure, and 20 min, and $300^{\circ}C$ for cow manure. At the optimum carbonization conditions, low heating values for the carbonization residue of cow and chicken manure are evaluated by 4,378kcal/kg, and 3,462kcal/kg, respectively. The residues of cow manure were satisfied with the standard of solid fuel product. However, the residue of chicken should be improved by materials changes to be used as a renewable energy source.

원자력용 Type 316L 스테인레스강의 질소첨가에 따른 미세구조 및 예민화 특성 변화

  • 오용준;류우석;윤지현;홍준화;국일현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.73-78
    • /
    • 1996
  • Type 316L 스테인레스강에 대한 질소첨가의 효과를 분석하기 위해 질소를 소량(0.024%)첨가한 합금과 적정량(0.15%) 첨가한 합금을 용해하여 입계부식특성 평가를 하였다. Oxalic시험 및 DL-EPR 시험 결과 적정량의 질소를 첨가한 합금이 소량 첨가한 금보다 우수한 예민화 특성을 보였다. TEM에 의한 미세구조 분석 결과 저질소 합금의 경우 비교적 짧은 열처리 시간에 M$_{23}$C$_{6}$ type의 석출물이 입계를 따라 형성되고 시효시간이 경과 할수록 그양이 급격히 증가하는 양상을 보인 반면에 적정 질소 첨가 합금의 경우 탄화물 생성이 비교적 긴 시효시간으로 늦추어져 예민화 실험 결과와 일치된 결과를 보였다. 두 합금 모두에서 탄화물 이외에 Mo의 함량이 매우 높은 석출물이 관찰되었는데 적정질소 첨가강의 경우 시효 시간의 경과에 따라 초기의 작은 cluster들의 형태에서 시작하여 얇은 박막의 형태로 입계면을 따라 성장하는 양상을 보였고, 반면에 저질소합금의 경우 입계를 따른 작은 석출물들이 cluster들로는 성장하였으나 장시간 시효가 진행됨에 따라 탄화물의 성장에 의해 박막 형태로는 성장하지 못하였다. Mo-rich 박막형상 석출물에 대한 분석 결과 20-면체 준결정상의 형태에 매우 가까운 결정구조를 보였으며 때로 η상과 매우 밀접한 회절 패턴도 관찰되었다. 이러한 상은 적정 질소첨가 합금에서의 탄화물 생성 지연과도 관련이 있을 것으로 추정되었다.

  • PDF

Effects of Cr, V, Mo and W on Solidefication Structure of Multi-Component White Cast Iron (다합금계 백주철에 있어서 Cr, V, Mo 및 W가 응고조직에 미치는 영향)

  • Ryu, Seong-Gon
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.607-612
    • /
    • 1998
  • 다합금계백주철의 성분원소인 Cr, V, Mo 및 W 의 첨가량을 변화시켜 응고조직을 관찰하였다. MC탄화물은 초정 austenite dendrite 내에 괴상 및 구상으로 M7C3탄화물은 intercellular boundary에 꽃형태 또는 bar 형태로, 그리고 M2C 탄화물은 M7C3탄화물과 마찬가지로 intercellular boundary에 침상으로 정출하였다. 기지조직은 주방상태에서 pealite 또는 (pearlite + austenite)의 혼합조직으로 구성되어 있었으며, 또한 EPMA 분석결과 MC탄화물은 V, M7C3 탄화물은 Cr 그리고 M2C탄화물은 Mo 및 W가 주성분으로 되어 있음을 알 수 있었다. 냉각곡선을 측정한 결과 액상에서 MC, M7C3, M2C 순으로 공정반응이 일어나고 있었으며 또한 X-선 회절시험을 통해 각 탄화물의 회절 peak를 관찰하였는바 응고조직의 사진과 잘 일치하고 있음을 알 수 있었다.

  • PDF

Characteristics of Charcoal from Wood Pellet (목질펠릿으로 제조한 탄화물의 특성)

  • Han, Gyu-Seong;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.15-21
    • /
    • 2006
  • The objective of this research is to develop the technique for carbonization of wood pellet and analyze a possibility for the utilization of carbonized wood pellet. The properties of wood pellet charcoals, such as density, yield, elemental composition, higher heating value, and methyleneblue adsorption, were analyzed. Wood pellet was made of sawdust of Hyunsasi-poplar, Japanese larch, Korean pine, Korean red pine, and Jolcharn-oak (serrate oak), respectively. The high density charcoal ($0.5{\sim}0.7g/cm^3$) was yielded from densified wood pellet. The carbon contents and calorific values of wood pellet charcoals were increased with the increase of carbonization temperature. The methyleneblue adsorptivity of wood pellet charcoal was similar to that of wood charcoal.

Adsorption Characteristics of Charcoal from Major Korean Wood Species and Wood-based Materials (II) (국산 주요 수종 및 목질재료 탄화물의 흡착 특성(II))

  • Lee, Dong-Young;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.281-290
    • /
    • 2011
  • We analyzed the basic characteristics and adsorption property of carbonized materials from thinning byproducts of major Korean wood species for evaluating as charcoal making raw material. Yield of charcoal was decreased with increasing the carbonization temperature for all wood species. Refining degrees was 9.0 at $400^{\circ}C$, 3.3~5.0 at $600^{\circ}C$ and 0 at $800^{\circ}C$, and was no difference among wood species. With increasing the carbonization temperature, the fixed carbon content was also increased, and charcoal from softwoods had more fixed carbon content than that from hardwoods. Specific surface area was increased with increasing the carbonization temperature, softwood charcoal had more specific surface area than that of hardwood. Pinus rigida showed the highest specific surface area. In formaldehyde removal by charcoal, some materials had highest at $600^{\circ}C$ and the others had highest at $800^{\circ}C$. Pinus koraiensis, Qurcus acutissima and MDF showed maximum formaldehyde removal ability at $600^{\circ}C$. Ethylene gas removal ability of charcoal was increased with increasing the carbonization temperature, and the charcoal from Pinus rigida and Robinia pseudoacacia had higher ethylene gas removal ability than the other species.

Development of Carbonization Technology and Application of Unutilized Wood Wastes(II) - Carbonization and it's properties of wood-based materials - (미이용 목질폐잔재의 탄화 이용개발(II) - 수종의 목질재료 탄화와 탄화물의 특성 -)

  • Kong, Seog-Woo;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • Objective of research is obtain fundamental data of carbonized wood wastes for soil condition, de-ordorization, absorption of water, carrier for microbial activity, and purifying agent for water quality of river. The carbonization technique and the properties of carbonized wood wastes(wood-based materials) were analyzed. Proximate analysis showed the wood-based materials contains 0.37~2.27% ash, 70~74% volatile matter, and 17~20% fixed carbon. As carbonization temperature was increased, the charcoal yield was decreased. However, no difference in charcoal yield was found due to time increase. The specific gravity after the carbonization decreased about 30~40% comparing to green wood. The charcoal had 1.08~4.18% ash, 5.88~13.79% volatile matter, and 80.15~90.94% fixed carbon. The pH of plywood and particleboard(pH 9 at $400^{\circ}C$, pH 10 at $600^{\circ}C$ and $800^{\circ}C$) made charcoals was higher than that of fiberboard. The water-retention capacity was not affected by the carbonization temperature and time. The water-retention capacity within 24h was about 2~2.5 times of sample weight, and the Equilibrium moisture content(EMC) became 2~10% after 24h. EMC of charcoal from the thinned trees were 9.40~11.82%($20^{\circ}C$, RH 90%), 6.87~7.61%($20^{\circ}C$, RH 65%), and 1.69~2.81%($20^{\circ}C$, RH 25%). EMC of charcoal from the wood-based materials under $20^{\circ}C$, relative humidity(RH) 90% was similar to EMC of charcoal from the thinned trees(9~11 %). However, under $20^{\circ}C$, RH 25.65%, EMC of charcoal from the wood-based materials were higher(2~3%) than EMC of charcoal from the thinned trees. Every charcoal from the wood-based materials fulfilled the criteria in JWWA K 113-1947.

  • PDF

Geochemical and Geophysical Characteristics of Shallow Gases in the Deep Sea Sediments, Southwestern Ulleung Basin (울릉분지 남서부 심해저 퇴적층에 분포하는 천부 가스의 지화학 및 지구물리 특성)

  • 김일수;이영주;유동근;류병재
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.149-157
    • /
    • 2003
  • Deep sea core samples were taken in the southwestern part of the Ulleung Basin in order to characterize the properties of shallow gases in the sediment. Amount of shallow gases in the sediments were calculated by head space techniques, and chemical and isotopic compositions of hydrocarbon gases were analyzed. Geochemical analyses were carried out on the gas bearing sediments to find out relationship between natural gas contents and organic characteristics of the sediments. Seismic characteristics of shallow gases in the sediments were also examined in this study. The amount of the hydrocarbon gases in the sediments range from 0.01% to 11.25%. Calculation of volume of gas per volume of wet sediment varies from 0.1 to 82.0 ml HC/L wet sediment. Methane consists 98% of the total hydrocarbon gases except for two samples. Based on the methane content and isotopic composition$(\delta^{13}c)$: -94.31$\textperthousand$~-55.5$\textperthousand$), the hydrocarbon gases from the sediments are generated from bacterial activities of methanogenic microbes. Contents of hydrocarbon gases are variable from site to site. Volume of shallow gases in the sediments shows no apparent trends vs. either characteristics of organic matter or particle sizes of the sediments. Gas concentration is high in the area of seismic anomalies such as blanking zone or chimney structures in the section. Physicochemically the pore water and the formation water systems are saturated with gases in these areas. Concentration of hydrocarbon gases in the sediments in these area shows favorable condition for generation of gas hydrate, as far as the other conditions are satisfied.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora S. et Z) Powder (I) - Elemental Analysis, SEM, N2 Adsorption-desorption- (가열처리 및 탄화처리 소나무재(Pinus densiflora) 목분의 구조 및 물리·화학적 특성(I) - 원소 분석, SEM, 질소 흡착-탈착 실험 -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.44-51
    • /
    • 2008
  • In this study, the effects of carbonization temperature on the physico-chemical properties of Korean red-pine wood (Pinus densiflora S. et Z.) powder charcoal are studied by elemental analysis, nitrogen adsorption-desorption and SEM techniques. The surface structure and physico-chemical properties of the wood charcoal greatly depend on the carbonization temperature and their temperature dependences for sapwood (swd) and heartwood (hwd) are qualitatively analogous. Because of the differences in characteristics such as hardness and composition between heartwood and sapwood, charcoals from heartwood have larger specific surface area and smaller average pore diameter than that from sapwood. Because the decomposition reaction mostly proceeds in the precarbonization stage, the charcoal produced in this stage mainly consists of carbon. The second carbonization reaction is insignificant but still proceeds up to $700^{\circ}C$, and the specific surface area continuously increases. Above $800^{\circ}C$, the surface area is reduced by the pore-filling and narrowing effects and especially above $900^{\circ}C$, new carbon phase with hexagonal column rooted into the pore is formed. The nitrogen adsorption-desorption isotherm of the charcoal is classified as type I and its hysteresis loop was as type H4.