• Title/Summary/Keyword: 탄화공정

Search Result 353, Processing Time 0.028 seconds

Application of rate-controlled sintering into the study of sintering behavior of boron carbide (탄화붕소 소결 거동 연구를 위한 율속제어소결의 적용)

  • Lee, Hyukjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • Under rate-controlled sintering, furnace power is controlled to maintain a specific specimen contraction rate. This thermal processing method guarantees continuous process with a minimum thermal energy applied over time and makes it possible to control the density of the sintered body precisely. In this study, the rate-controlled sintering is applied to the sintering of $B_4C$ in order to investigate how rate-controlled sintering variables can affect the sintering behavior and/or grain growth behavior of $B_4C$ and how the results can be interpreted using sintering theories to draw an optimal sintering condition of the rate-controlled sintering. Further, the applicability of the rate-controlled sintering into the study for sintering of unknown materials is also considered.

The Distribution Behavior of Alloying Elements in Matrices and Carbides of Chromium White Cast Iron (크롬백주철의 기지조직 및 탄화물에 있어서 합금원소의 거동)

  • Ryu, Seong-Gon
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.489-492
    • /
    • 2000
  • Three different white cast irons alloyed with Cr and Si were prepared in order to study their distribution be-havior in matrices and carbides. The specimens were produced using a 15kg-capacity high frequency induction fur-nace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into a pepset mold. Three combinations of the alloys were selected so as to observe the distribution behavior of Cr and Si : 0.5%C-25.0%Cr-1.0%Si(alloy No. 1), 0.5%C-5.0%Cr-1.0%Si(alloy No. 2) and 2.0%C-5.0%Cr-1.0%Si(alloy No. 3). Cellular $M_7C_3$ carbides-$\delta$ferrite eutectic were developed at $\delta$ferrite liquid interfaces in the alloy No. 1 while only traces of $M_7C_3$ carbides-$\delta$ferrite eutectic were precipitated in the alloy No. 2. With the addition of 2.0% C and 5.0% Cr, ledeburitic $M_3C$ carbides instead of cellular $M_7C_3$ carbides were precipitated in the alloy No. 3. Cr was distributed preferentially to the $M_7C_3$ carbides rather than to the matrix structure while more Si was partitioned in the matrix structure rather than the $M_7C_3$ carbides. $K^m$ for Cr was ranged from 0.56 to 0.68 while that for Si was from 1.12 to 1.28. $K^m$ for Cr had a lower value with increased carbon contents. The mass percent of Cr was higher in the $M_7C_3$ carbides with increased Cr contents.

  • PDF

카본 페놀 복합재료의 내열특성 연구(I)

  • Lee, Hyung-Sik;Jung, Sam-Tae;Yoon, Nam-Gyun;Ye, Byung-Han;Jung, Bal
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.23-29
    • /
    • 1995
  • Fafbric 4종, 수지2종과 상용화된 프리프레그 2종에 대한 내열특성에 관하여 비교 연구 하였다. Fabric의 특성은 알려진 바와 같이 PAN계 카본 fabric의 경우 내삭마성은 우수하나 단열성능이 떨어지고, Rayon계의 경우는 그 반대이다. 공정성면에서는 rayon spun yarn으로 제직한 경우가 가장 우수한 것으로 나타났다. Spun PAM으로 제직한 경우는 직조후 탄화공정을 채택함으로써. 노즐재료로서 PAN계 탄소섬유의 사용을 가능하게 하였지만 즉 공정성은 좋으나 단열성 및 내삭마성 모두가 떨어졌다. F940수지의 경우는 SC1008과 페놀수지의 화학적특성은 다소 차이가 있으나 물리적특성이나 열적특성은 거의 유사한 것으로 나타났다. 프리프레그의 제조는 각수지와 Fabric의 조건에 맞게 R/C, V/C를 조정하여 코팅하였다. 토오치 테스트등 결과들을 종합해보면 전체적인 노즐재료로서의 성능은 아직은 Rayon계 카본이 우수한것으로 판단할수 있으나, 보다 정확한 평가를 위해서는 실제 노즐 테스트가 필요하다.

  • PDF

Synthesis of High-purity Silicon Carbide Powder using the Silicon Wafer Sludge (실리콘 기판 슬러지로부터 고순도 탄화규소 분말 합성)

  • Hanjung Kwon;Minhee Kim;Jihwan Yoon
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.60-65
    • /
    • 2022
  • This study presents the carburization process for recycling sludge, which was formed during silicon wafer machining. The sludge used in the carburization process is a mixture of silicon and silicon carbide (SiC) with iron as an impurity, which originates from the machine. Additionally, the sludge contains cutting oil, a fluid with high viscosity. Therefore, the sludge was dried before carburization to remove organic matter. The dried sludge was washed by acid cleaning to remove the iron impurity and subsequently carburized by heat treatment under vacuum to form the SiC powder. The ratio of silicon to SiC in the sludge was varied depending on the sources and thus carbon content was adjusted by the ratio. With increasing SiC content, the carbon content required for SiC formation increased. It was demonstrated that substoichiometric SiCx (x<1) was easily formed when the carbon content was insufficient. Therefore, excess carbon is required to obtain a pure SiC phase. Moreover, size reduction by high-energy milling had a beneficial effect on the suppression of SiCx, forming the pure SiC phase.

Effect of Phosphorous-Based Flame Retardants on the Weight, Diameter, and Thermal Stability after Stabilization Processes of Rayon Fibers for Carbon Fibers (탄소섬유용 레이온섬유의 안정화공정 후 중량, 직경 및 열안정성에 미치는 인계 난연제의 영향)

  • Yoon Sung Bong;Cho Donghwan;Park Jong Kyoo
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.211-215
    • /
    • 2005
  • Stabilization process is absolutely necessary to convert the precursor fibers into chemically, physically, thermally and structurally stable carbon fibers. Especially, it is critically important for rayon fibers experiencing severe weight loss and thermal shrinkage occurring at the stabilization stage below $400^{\circ}C$. The stabilization of rayon fibers strongly depends not only on stabilization temperature but also on heating rate, chemical pre-treatment, atmosphere, and so on. In the present study, the weight loss, fiber diameter change occurred in the furnace during the stabilization process for rayon fibers produced with various heating rates and in the absence and presence of phosphorous-based flame retardants and the thermal stability of the stabilized fibers were investigated. The result indicates that the weight, diameter and thermal stability of the rayon fibers are significantly affected by the type and amount of the flame retardant used. It is also suggested that the pre-treatment of rayon fibers with a concentration lower than $3\;vol\%$ of phosphoric acid is most desirable for further carbonization process of stabilized rayon fibers.

Fabrication Process and Prospect of the Ceramic Candle Filter by Ramming Process (래밍성형에 의한 세라믹 캔들 필터 제조공정 및 전망)

  • Seo, Doowon;Han, Insub;Hong, Kiseog;Kim, Seyoung;Yu, Jihang;Woo, Sangkuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.113.2-113.2
    • /
    • 2010
  • 세라믹 필터는 여러 종류의 분진제거 시스템에서 연소 배가스 정제를 위한 가장 적절한 소재로 알려져 있다. 현재까지 다양한 형태의 세라믹 필터가 개발되고 있는데, 캔들 타입(candle type), 튜브 타입(tubular type), 평판 타입(parallel flow type) 등이 그 예이다. 통상적으로 세라믹 캔들 필터는 가압유동층복합발전(PFBC, Pressurize Fluidized-Bed Combustion), 석탄가스화복합발전(IGCC, Integrated coal Gasification Combined Cycle), 석탄가스화연료전지복합발전(IGFC, Integrated coal Gasification Fuel cell Combined cycle)에서 고온 배가스 정제용으로 사용되고 있다. 일반적으로 IGCC나 CTL 합성가스 정제시스템의 경우에는 높은 고압(약 25기압)과 미세분진이 함유되어 있는 분위기에서 운전된다. 그러므로 이때 사용되는 초청정용 세라믹 집진필터는 고온, 고압 및 부식 환경에서 50 MPa 이상을 갖는 높은 강도와 내식성을 갖도록 개발되어야 하기 때문에 SiC(Silicon Carbide)가 가장 적절한 캔들 필터 소재로 적용되고 있다. 이에 따라 집진용 SiC 세라믹 캔들 필터를 개발하기 위해서는 고온에서 내산화성이 우수하고, 부피팽창에 의한 균열이 발생하지 않는 무기결합재의 선정 및 이를 통한 소재의 특성 최적화가 가장 중요한 부분이라 할 수 있다. 본 연구에서는 래밍성형 공정을 적용하여 1m급 탄화규소 세라믹 캔들 필터 시작품을 제조하였으며, 래밍성형 공정 이외에 정수압가압성형, 진공압출성형으로 제조되고 있는 세라믹 캔들 필터의 국내외 시장 및 그 전망을 분석하였다.

  • PDF

Measurement of Carbon Concentration and Dissolution Ratio in Molten Steel by the Mixing Conditions of Carbon Materials Using Coffee Grounds (커피박을 활용한 탄재 혼합 조건에 따른 용강 내 탄소의 농도 및 용해 효율 측정)

  • Kim, Gyu-Wan;Ryu, Geun-Yong;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.77-82
    • /
    • 2021
  • Reduction of CO2 emissions is an important issue in the steel industry, and the research on carbon materials that can partially replace cokes is necessary to reduce CO2 emissions. Meanwhile, the biomass fuel contains some fixed carbon, and the carbon content in the biomass can be increased by torrefaction. As one of the biomass fuels, coffee grounds contains about 55 mass% of carbon, and its about 270,000 tons are landfilled and incinerated annually in Korea. In addition, research on the recycling process due to the increase in annual coffee consumption is required. In this study, the effect of temperature on the concentration of fixed carbon in coffee grounds was investigated during torrefaction. Moreover, the effects of mixing ratio of torrefied coffee grounds with cokes on the carbon concentration and dissolution efficiency in the metal sample were investigated.

Concentration of Alcohols in Dilute Aqueous Solution by Pervaporation (투과증발을 이용한 알코올 농축)

  • 임군택;김현일;김성수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.113-116
    • /
    • 1998
  • 1. 서론 : 투과증발을 이용한 분리공정은 현재 산업적으로 다양하게 응용되고 있다. 사탕수수에서 발효, 증류된 93%에탄올을 99.8% 이상의 무수에탄올로 농축하기 위해 물을 탈수하는 공정이 이미 상업화되어 있으며, 또, 반도체 웨이퍼나 LCD세정제로 사용되는 IPA 회수공정, 폐수나 대기중에 함유된 방향족, 염소계 탄화수소 등의 휘발성 유기성분(VOC)을 제거, 회수하는 유기물 농축공정에도 사용되고 이밖에 기존의 증류로 분리하기 힘들고, 에너지 사용량이 높은 유사한 유기혼합물의 분리에 사용되며 현재 메탄올/MTBE 및 에탄올/ETBE등의 혼합물을 분리하기 위해 투과증발 시스템 개발이 진행되고 있다. (생략)

  • PDF

A Study on the Manufacture of Bio-SRF from the Food Waste by Hydrothermal Carbonization (HTC) Process (열수가압탄화 공정에 의한 음식물폐기물로부터의 Bio Solid Reuse Fuel (Bio-SRF) 연료제조에 관한 실증연구)

  • HAN, DANBEE;YEOM, KYUIN;PARK, SUNGKYU;CHO, OOKSANG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.426-432
    • /
    • 2017
  • Hydrothermal carbonization (HTC) is an effective and environment friendly technique; it possesses extensive potential towards producing high-energy density solid fuels. it is a carbonization method of thermochemical process at a relatively low temperature ($180-250^{\circ}C$). It is reacted by water containing raw material. However, the production and quality of solid fuels from HTC depends upon several parameters; temperature, residence time, and pressure. This study investigates the influence of operating parameters on solid fuel production during HTC. Especially, when food waste was reacted for 2 hours, 4 hours, and 8 hours at $200^{\circ}C$ and 2.0-2.5 MPa, Data including heating value, proximate analysis and water content was consequently collected and analyzed. It was found that reaction temperature, residence time are the primary factors that influence the HTC process.

Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature (폴리카보실란 전구체로부터 고온 산화성분위기서 기계적물성이 우수한 파이롯-규모의 탄화규소섬유 제조공정 개발)

  • Yoon, B.I.;Choi, W.C.;Kim, J.I.;Kim, J.S.;Kang, H.G.;Kim, M.J.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.116-125
    • /
    • 2017
  • The purpose of this study is to develop silicon carbide fiber showing an excellent mechanical properties under highly oxidative conditions at high temperature. Polycarbosilane(PCS) as a preceramic precursor was used for making the SiC fiber. PCS fiber was taken by melt spinning method followed by melting the PCS at $300{\sim}350^{\circ}C$ in N2 gas. The Curing of PCS fiber was carried out in air oxygen chamber, prior to high temperature pyrolysis. Degree of cure was calculated by characteristic peak's ratio of Si-H to $Si-CH_3$ in FT-IR spectra before and after curing of PCS fiber. The properties of SiC fiber was affected greatly by the degree of cure. The SiC fiber produced by controlling fiber tension during heat treatment showed good properties. The SiC fiber exposed to $1000^{\circ}C$ at air from 1 min. up to maximum 50 hrs showed around 60% reduction in tensile strength. We found that large amount of carbon content on the fiber surface after long-term exposure has resulted in lower tensile strength.