• Title/Summary/Keyword: 탄소-수소 비율

Search Result 70, Processing Time 0.025 seconds

Changes of Chemical Bond in Woody Charcoal from Different Carbonization Temperatures (목질탄화물 내의 화학 결합 변화)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon;Cho, Sung-Taig;Kim, Suk-Kuwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.87-93
    • /
    • 2009
  • Properties and chemical bonding of wood charcoal were investigated to understand the chemistry occurring in wood carbonization. From the pH changes of wood charcoal, it is revealed that it becomes acidic to weakly basic for charcoal carbonized at about $300^{\circ}C$, whereas it turns to basic at higher carbonization temperature higher than $600^{\circ}C$. Also, the ratio of carbon atoms in the charcoal was increased with increasing the carbonization temperature, while those of oxygen and hydrogen atoms. This tendency was significant when the carbonization temperature was increased up to $600^{\circ}C$ and the ratio changes of the atoms became stable at above $600^{\circ}C$. In the changes of chemical bonding, the ratio of C-C bonding was increased and those of C-O-H and C-O-R bonding was decreased significantly. It is considered that bondings connected to oxygen atoms tends to be broken, and the ratio of C-C bonding increased. Consequently, it is expected that this change may causes occurrence of new functional groups. In addition to that, it seems to be that the chemical bondings undergo the partial decomposition, formation, and recombination steps, Because ratio of C=O bonding tended to be increased or decreased by increasing the carbonization temperature. This understanding of chemical bond changes in charcoal can be a compensative consideration on the knowledges made only by physical parameters in the properties of micro-pore which has limited to explain the phenomenon. Also, it is considered that this can be treated as a basic knowledge for upgrading and development of use of wood charcoal.

Organic Compounds in Condensable Particulate Matter Emitted from Coal Combustion (석탄 연소 시 배출되는 응축성 미세먼지의 유기 성분)

  • Jin Park;Sang-Sup Lee
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.279-287
    • /
    • 2023
  • Fine dust emitted from coal combustion is classified into filterable particulate matter (FPM) and condensable particulate matter (CPM). CPM is difficult to control with existing air pollution control devices, so research is being conducted to understand the characteristics of CPM. Components constituting condensable particulate matter (CPM) are divided into inorganic and organic components. There are many quantitative analysis results for the ionic components, which account for a significant proportion of the CPM inorganic components, but little is known about the organic components. Thus, there is a need for a quantitative analysis of CPM organic components. In this study, aromatic hydrocarbons (toluene, ethyl benzene, m,p-xylene, and o-xylene) and n-alkanes with 10 to 30 carbon atoms were quantitatively analyzed to understand the organic components of CPM emitted from a lab-scale coal combustor. Of the aromatic hydrocarbons, toluene accounted for 1.03% of the CPM organic components. On the other hand, the contents of ethyl benzene, m,p-xylene, and o-xylene showed low values of 0.11%, 0.18%, and 0.51% on average, respectively. Among the n-alkanes, triacontane (C30) showed a high content of 2.64% and decane (C10) showed a content of 2.05%. The next highest contents were shown with dodecane (C12), tetradecane (C14), and heptacosane (C27), all of which were higher than that of toluene. The n-alkane substances that had detectable concentrations showed higher contents than ethyl benzene, m,p-xylene, and o-xylene except for tetracosane (C24).

A Study of Improving Fuel Droplet Movement with Sonic Wave Radiation (음파를 이용한 연료 입자 운동성 향상에 관한 연구)

  • Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.608-613
    • /
    • 2019
  • NOx (Nitrogen oxide) in the exhaust gas from vehicle engines is considered one of the most harmful substances in air pollution problems. NOx is made when combustion occurs under high temperature conditions and EGR (exhaust gas recirculation) is normally used to lower the combustion temperature. As the EGR ratio increases, the NOx level becomes low, but a high EGR ratio makes the combustion unstable and causes further air pollution problems, such as CO and unburned hydrocarbon level increase. This study showed that fuel droplets could move more freely by the radiation of sonic wave for the stable combustion. In addition, the engine performance improved with increasing EGR ratio. As a basic study, the effect of sonic wave radiation on the velocity of fuel droplets was studied using CFD software. The results showed that the velocity of small droplets increased more under high frequency sonic wave conditions and the velocity of the large droplets increased at low frequency sonic wave conditions. In addition, an engine analysis model was used to study the effects of the increased combustion stability. These results showed that a 15% increase in EGR ratio in combustion resulted in a 45% decrease in NOx and a 10% increase in thermal efficiency.

Hydroacylation of 1,5-Hexadiene through C-H Bond Activation (탄소-수소 결합 활성을 이용한 1,5-헥사디엔의 하이드로아실화반응 연구)

  • Jeon, Cheol Ho;Han, Jong Su;Kim, Seon Il
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.833-840
    • /
    • 1994
  • 8-Quinolinecarboxaldehyde (1) reacted with 1,5-hexadiene (2) in THF under Wilkinson's catalyst(3) and $AgBF_4(8)$ to give a mixture of 8-quinolinyl 5-hexenyl ketone (4) and 8-quinolinyl 5-hexen-2-yl ketone (9) at initial reaction stage. The reason for the formation of the branched alkenyl ketone 9 is supposed to be that the vacant coordination site, generated from Wilkinson's catalyst and $AgBF_4(8)$, makes it possible to form the 5.5 membered ring metallacycle intermediate. The higher the concentration of $AgBF_4(8)$ was used, the greater the ratio of 9 to 4 was observed. Longer reaction time and high temperature induced isomerization of 9 and 4 to 10 and 5. Especially the high reaction temperature increased the possibility of cyclization of the 5-hexenyl metal intermediate to give 8-quinolinyl cyclopentylmethyl ketone (11).

  • PDF

Studies on the Physiological Characteristics of Bacterial Leaf Blight Pathogen of rice, Xanthomonas oryzae Dowson (벼 흰빛잎마름병균의 생리적 성상에 관한 시험)

  • Choi Yong Chul;Lee Kyung Whee;Cho Eui Kyoo
    • Korean journal of applied entomology
    • /
    • v.10 no.2
    • /
    • pp.97-101
    • /
    • 1971
  • 1. The experiment was conducted to investigate the physiological characteristics on ten isolates of bacterial leaf blight pathogen of rice, Xanthomenas eryzae Dowson. Seven out of tin isolates were isolated from infected leaves of various rice varieties including IR strains in Korea. Isolates S-20 and S-103 were originated from IRRI in Philippines, and isolate H-5809 was allocated by National Institute of Agricultural Science in Japan. 2. All isolates Produced hydrogen sulfide and ammonia 9as from peptone sol. media, and reduced methylen blue, Gelatin liquefaction occurred by all isolates tested, although each isolate showed different degree of liquefaction No coagulation of the casein in milk by the isolates was observed, though some amount of acid production occurred in litmus milk by ail isolates tested. 3. All isolates utilized glucose and galactose, and slight utilization of esculin, mannitol, raffinose, salicin and saccharose was observed. Lactose, starch and dextrin, however, were not utilized at all by all isolates tested in the study.

  • PDF

Characteristic Analysis of GTL Fuel as an Automobile Diesel (자동차용 경유로서 GTL의 연료특성분석)

  • Lim, Young-Kwan;Shin, Seong-Cheol;Kim, Jong-Ryeol;Yim, Eui-Soon;Song, Hung-Og;Kim, Dongkil
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.617-623
    • /
    • 2008
  • GTL (gas-to-liquid) fuel produced by the Fischer-Tropsch reaction of carbon monoxide (CO) and hydrogen ($H_2$) is expected to be one of the environmental friendly biomass based alternatives and blended to petrodiesel. In this study, the characteristic of the fuel was analyzed by its concentration differences after blending petrodiesel in domestic market with different amounts of GTL fuel which produced from Shell. Gas chromatography shows that GTL fuel consists of longer paraffin chain than common diesel. GTL fuel showed a high flash point, distillation, kinematic viscosity, and derived cetane number. In addition, GTL fuel showed lower lubricity due to low sulfur content.

Design and Test of Slag Tap Burner System for Prevention of Molten Slag Solidification in Coal Gasifier (석탄가스화기 용융슬랙의 고형화 방지를 위한 슬랙탭 버너시스템 설계 및 시험)

  • Chung, Seokwoo;Jung, Kijin;Lee, Sunki;Byun, Yongsu;Ra, Howon;Choi, Youngchan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.74.2-74.2
    • /
    • 2011
  • 석탄가스화 기술은 고온, 고압 조건에서 석탄과 산소의 불완전연소 및 가스화 반응을 통해 일산화탄소(CO)와 수소($H_2$)가 주성분인 합성가스를 제조하여 이용하는 현실적인 에너지원의 확보를 위한 방법인 동시에 이산화탄소를 저감할 수 있는 기술이다. 석탄가스화기 공급되는 석탄은 산소와의 부분 산화, 수증기 및 $CO_2$와의 반응에 의하여 합성가스로 전환되는데, 일반적으로 슬래깅 방식 석탄가스화기의 정상운전 중에 가스화기 내부 온도는 $1,400{\sim}1,600^{\circ}C$ 정도의 고온이며, 운전압력은 20~60 기압으로 매우 고압 상태에서 운전이 이루어지는데, 공급되는 석탄 시료의 성분들 중 가연성 물질의 99% 이상이 합성가스로 전환되는 반면, 회분에 해당되는 무기물의 대부분은 용융 슬랙 형태로 가스화기의 벽을 타고 흘러내리다가 슬랙탭을 통해 하부의 냉각조로 떨어지면서 급냉이 이루어지게 된다. 그러므로, 석탄가스화기 정상운전중 슬랙탭 주변의 온도를 고온으로 유지함으로써 용융슬랙의 고형화를 방지하는 것은 석탄가스화기의 안정적인 연속운전을 위하여 중요한 기술 중의 하나라고 할 수 있다. 따라서, 본 연구에서는 저급탄 가스화를 위한 1 톤/일급 고온, 고압 습식 석탄가스화기의 정상운전중 슬랙탭 부근에서 용융슬랙의 고형화를 방지하기 위한 슬랙탭 버너시스템의 설계를 진행하였으며, 안정적인 운전조건 도출을 위하여 보조연료(CNG)와 산소의 공급비율에 따른 화염특성 시험을 진행하였다.

  • PDF

An Investigation on the Technical Background for Carbon-14 Monitoring in Radioactive Effluents (원자력시설의 Carbon-14 방사성유출물에 대한 감시배경의 조사)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae;Kim, Seok-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.195-200
    • /
    • 2009
  • effluents to the environment. The activity of carbon-14, one of the radioactive effluents, in the environment is already high level and its effect on radiation exposure to the public and the environment is insignificant; thus, NPPs did not perform the carbon-14 monitoring in effluents in the past. By the way, effluents of noble gas and particulate radioactive materials originated from nuclear fuels has been continuously reduced due to both the advancement of manufacturing and integrity technology for nuclear fuels and the improvement of operation methods of NPPs. Futhermore, the portion of dose assessment by tritium and carbon-14 to the public has been relatively increased because the lower limit of detection for low-energy beta sources, such as tritium and carbon-14, is low due to the advancement of radiation detection technology. In this paper, the technical background for carbon-14 monitoring in nuclear facilities was investigated using United States technical reports and papers. This paper also reviews whether carbon-14 monitoring is necessary or not based on the investigated documents.

Physico-Chemical Characteristics of Municipal Solid Waste Generated from T City and Leaching Characteristics of the Incineration Ash (T시 생활폐기물의 물리화학적 특성 및 소각재 용출특성)

  • Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.84-92
    • /
    • 2010
  • This research was conducted to investigate physico-chemical characteristics of municipal solid waste (MSW) generated from T City, Gangwon-do and leaching characteristics of the incineration ash. From the results, bulk density of MSW in T city was $231kg/m^3$. Combustible and incombustible components were in 94.0% and 6.0%, respectively. Food waste and papers in combustible component occupied 32.3% and 41.2%. Water, volatile solids, and ash content were 41.3%, 50.5%, and 8.2%. C, H, O, N, S, and Cl showed 51.4%, 6.3%, 26.7%, 1.1%, 0.2%, 0.5%, respectively. Low heating value (2,704 kcal/kg) of T city was similar to 2,764 kcal/kg of Chuncheon and was 1,000 kcal/kg higher than 1,467~1,584 kcal/kg of the past Kuro-gu and Koyang city. The specification of leaching characteristics of the incineration ash were within the Korean regulation standard.

Physiological Changes in Related to Molt Cycle of Macrobrachium nipponense(De Haan) (징거미 새우, Macrobrachium nipponense(De Haan) 유생의 탈피주기와 관련한 생리적 변화)

  • SHIN Yun-Kyung;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.380-389
    • /
    • 1994
  • Larvae of the freshwater shrimp, Macrobrachium nipponense(De Haan) were reared in the laboratory under constant conditions ($25^{\circ}C,\;7\%0$ S), and their feeding rate, oxygen consumption, ammonia nitrogen excretion, and growth were measured at regular intervals during development from hatching to post larval stage. Growth was measured as dry weight, carbon, nitrogen, hydrogen, protein and lipid. All these physiological and biochemical traits revealed significant changes from instar to instar. Average feeding rate was high in intermolt stage of the molt cycle and it showed a bell-shaped pattern. Respiration(R) increased from hatching to post larval stage. Excretion(U) increased in intermolt phase of larvae and it showed a bell-shaped variation pattern, in all larval instars with a maximum near the middle of the molt cycle. Regression equations describing rates of feeding, growth, respiration and ammonia excretion as functions of time during individual larval molt cycles were inserted in a simulation model, in order to analyse time-dependent patterns of variation as well as in bioenergetic efficiencies. Carbon was initially increased and nitrogen showed a tendency to increase in premolt phase during individual molt cycles. Protein remained clearly the predominant biochemical constituent in larval biomass.

  • PDF