• Title/Summary/Keyword: 탄소 흡수량

Search Result 182, Processing Time 0.025 seconds

A Study on Urban Tree Canopy Artificial Intelligence Model for Carbon Neutrality in the Face of Climate Crisis (기후 위기에 맞서 탄소중립을 위한 도시 나무 캐노피 인공지능 모델 연구)

  • Jung, Jisun;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.529-531
    • /
    • 2022
  • 기후 위기가 대두되며 탄소중립에 많은 관심이 쏟아지고 있다. 탄소중립을 실천하기 위한 여러 가지 방법 중 도시의 수목을 관리하는 것은 탄소배출 저감, 대기질 개선 등의 환경적인 긍정적 효과를 얻을 수 있다. 수종별 온실가스 흡수량과 흡수 계수에는 차이가 있지만 도시 나무 캐노피를 증가시키면 온실가스 흡수량도 증가한다. 본 논문은 탄소정보공개 프로젝트(CDP)에서 제공하는 데이터를 기반으로 도시의 녹지 지대를 구글 지도(Google Map) 위성사진을 통해 찾아내고 지니 계수(Gini Coefficient)를 통해 도심 녹지 균형을 비교하였다. 향후 도시 수목과 녹지 데이터를 축적해 기초자료가 쌓이면 도시환경의 지표로 활용될 수 있을 것으로 기대된다.

Estimation of Carbon Absorption Distribution based on Satellite Image Considering Climate Change Scenarios (기후변화 시나리오를 고려한 위성영상 기반 미래 탄소흡수량 분포 추정)

  • Na, Sang-il;Ahn, Ho-yong;Ryu, Jae-Hyun;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.833-845
    • /
    • 2021
  • Quantification of carbon absorption and understanding the human induced land use changes forms one of the major study with respect to global climatic changes. An attempt study has been made to quantify the carbon absorption by land use changes through remote sensing technology. However, it focused on past carbon absorption changes. So prediction of future carbon absorption changes is insufficient. This study simulated land use change using the Conversion of Land Use and its Effects at Small regional extent (CLUE-S) model and predicted future changes in carbon absorption considering climate change scenarios 4.5 and 8.5 of the Representative Concentration Pathways (RCP). Results of this study, in the RCP 4.5 scenarios there predicted to be loss of 7.92% of carbon absorption, but in the RCP 8.5 scenarios was 13.02%. Therefore, the approach used in this study is expected to enable exploration of future carbon absorption change considering other climate change scenarios.

Carbon Uptake and Emissions of Apple Orchards as a Production-type Greenspace (생산형 녹지 중 사과나무 과수원의 탄소흡수 및 배출)

  • Jo, Hyun-Kil;Park, Sung-Min;Kim, Jin-Young;Park, Hye-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.64-72
    • /
    • 2014
  • This study quantified the storage and annual uptake of carbon by apple trees in orchards as a production-type greenspace, and computed the annual carbon emissions from apple cultivation. Tree individuals in the study orchards were sampled to include the range of stem diameter sizes. The study measured biomass for each part including the roots of sample trees through a direct harvesting method to compute total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing the radial growth rates of stem samples at ground level. Annual carbon emissions from management practices such as pruning, mowing, irrigation, fertilization, and use of pesticides and fungicides were estimated based on maintenance data, interviews with managers, and actual measurements. Regression models were developed using stem diameter at ground level (D) as an independent variable to easily estimate storage and annual uptake of the carbon. Storage and annual uptake of carbon per tree increased as D sizes got larger. Apple trees with D sizes of 10 and 15 cm stored 9.1 and 21.0 kg of carbon and annually sequestered 1.0 and 1.6 kg, respectively. Storage and annual uptake of carbon per unit area in study orchards were 3.81 t/ha and 0.42 t/ha/yr, respectively, and annual carbon emissions were 1.30 t/ha/yr. Thus, the carbon emissions were about 3 times greater than the annual carbon uptake. The study identified management practices to reduce the carbon footprint of production-type greenspace, including efficient uses of water, pesticides, fungicides, and fertilizers. It breaks new ground by including measured biomass of roots and a detailed inventory of carbon emissions.

Carbon Storage and Uptake by Evergreen Trees for Urban Landscape - For Pinus densiflora and Pinus koraiensis - (도시 상록 조경수의 탄소저장 및 흡수 - 소나무와 잣나무를 대상으로 -)

  • Jo, Hyun-Kil;Kim, Jin-Young;Park, Hye-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • This study generated regression models through a direct harvesting method to estimate carbon storage and uptake by Pinus densiflora and Pinus koraiensis, the major evergreen tree species in urban landscape, and established essential information to quantify carbon reduction by urban trees. Open-grown landscape tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the two species by using diameter at breast height (DBH) as an independent variable. All the regression models showed high fitness with $r^2$ values of higher than 0.98. While carbon storage and uptake by young trees tended to be greater for P. densiflora than for P. koraiensis in the same diameter sizes, those by mature trees with DBH sizes of larger than 20 cm showed results to the contrary due to a difference in growth rates. A tree of P. densiflora and P. koraiensis with DBH of 25 cm stored 115.6 kg and 130.0 kg of carbon, respectively, and annually sequestered 9.4 kg and 14.6 kg. The study has broken new grounds to overcome limitations of the past studies which quantified carbon reduction of the study species by substituting, due to a difficulty in direct cutting and root digging of landscape trees, coefficients from forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates.

A Study on the Baseline Carbon Stock for Major Species in Korea for Conducting Carbon Offset Projects based on Forest Management (산림경영형 산림탄소상쇄 사업설계를 위한 주요 수종별 베이스라인 흡수량 산정)

  • Kim, Young-Hwan;Jeon, Eo-Jin;Shin, Man-Yong;Chung, Il-Bin;Lee, Sang-Tae;Seo, Kyung-Won;Pho, Jung-Kee
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.439-445
    • /
    • 2014
  • In this study, we developed a dynamic stand yield model to estimate the baseline carbon stock, which is essentially required for a forest carbon offset project based on forest management. For developing the yield model, the data was acquired from the databases of the $5^{th}$ National Forest Inventory. The model was validated by comparing its estimations with field measurements that were conducted from 4 study sites (14 plots with thinning treatments) located in Hong-chun, Hoeng-sung, Yang-yang Daechi and Yang-yang Jungja. The difference between the estimations and the field measurements was less than 5%. Using the dynamic stand yield model, we estimated the changes in stand yield volume and carbon stocks for each species according to the baseline scenarios. As the results, we found that baseline carbon stock was the highest at Quercus acutissima stand (83.01tC/ha), while the lowest at Pinus rigida stand (32.17tC/ha) and Pinus densiflora stand of central region (39.09tC/ha). Hence, a project provider could get more carbon emission credits from an improved forest management project when considering the project with Pinus rigida stand or Pinus densiflora stand (central region). The baseline carbon stock and the dynamic stand yield model developed from this study would be useful for designing carbon offset projects based on improved forest management.

Degradation Characteristics of Multi-walled Carbon Nanotube Embedded Nanocomposites (다중벽 탄소나노튜브가 함유된 나노복합재의 열화 특성)

  • Yoon, Sung Ho;Park, Ji Hye
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.422-428
    • /
    • 2017
  • The moisture absorption behavior, tensile properties, and thermal analysis properties of MWCNT embedded nanocomposites exposed to temperature and moisture were evaluated. The contents of MWCNT were 0 wt%, 1 wt%, and 2 wt%, respectively. The specimens were exposed to immersed conditions at $25^{\circ}C$ and $75^{\circ}C$ for up to 600 hours. According to the results, the apparent moisture content increased as the exposure time increased, but the difference between the maximum moisture content and the moisture content at 600 hours was almost constant. The tensile modulus decreased with increasing exposure time and the degree of decrease was increased significantly as the MWCNT content and exposure temperature increased. The tensile strength decreased with longer exposure time without MWCNT, but increased with MWCNT due to the reinforcing effect of MWCNT. The storage modulus, glass transition temperature, tan d peak magnitude were low as the exposure time increased, but tan d curves with two peaks appeared when exposed to high exposure temperature for more than 300 hours.

Comparison of Carbon Storages, Annual Carbon Uptake and Soil Respiration to Planting Types in Urban Park - The Case Study of Dujeong Park in Cheonan City - (도시공원 식재유형별 탄소저장량, 연간 탄소흡수량 및 토양호흡량 비교 - 천안시 두정공원을 중심으로 -)

  • Han, Mi-Kyoung;Kim, Kyeong-Jin;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • This study has compared carbon storages, annual carbon uptakes and annual soil respiration by planting type in Dujeong park, Cheonan city. Four plantations were selected in Dujeong park: Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation. We investigated each plantations from February 2012 to March 2013. Carbon storage and annual carbon uptake in each plantations were calculated with allometric method (Lee, 2003), and soil respiration was measured by using LI-6400 (LI-COR). Carbon storages in Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation were $17.36tonCha^{-1}$, $88.63tonCha^{-1}$, $115.38tonCha^{-1}$ and 4$9.88tonCha^{-1}$, and annual carbon uptakes were $1.04tonCha^{-1}yr^{-1}$, $2.12tonCha^{-1}yr^{-1}$, $6.47tonCha^{-1}yr^{-1}$ and $3.67tonCha^{-1}yr^{-1}$, respectively. Average annual carbon uptakes per tree of Pinus densiflora plantation, Quercus acutissima community and Robinia pseudoacacia plantation were $1.81kgC{\cdot}treeyr^{-1}$, $17.86kgC{\cdot}treeyr^{-1}$ and $9.14kgC{\cdot}treeyr^{-1}$ and Quercus acutissima was the greatest. The amounts of carbon released from soil respiration in the same four plantations were $2.20{\mu}molCO_2m^{-2}s^{-1}$, $1.90{\mu}molCO_2m^{-2}s^{-1}$, $2.47{\mu}molCO_2m^{-2}s^{-1}$ and $2.51{\mu}molCO_2m^{-2}s^{-1}$, and annual soil respiration were estimated $6.66tonCha^{-1}yr^{-1}$, $5.33tonCha^{-1}yr^{-1}$, $7.20tonCha^{-1}yr^{-1}$ and $7.25tonCha^{-1}yr^{-1}$, respectively. In this study area, Quercus acutissima-Robinia pseudoacacia plantation has a significant contribution to the role of carbon sink. However, the contribution of Pinus densiflora plantation was evaluated less. The results of this study can be used as the necessary data for tree planting and management in urban park.

Distribution and absorption of Organic Carbon in Quercus mongolica and Pinus densiflora Forest at Mt. Gumgang in Seosan (서산지역 금강산 신갈나무림과 소나무림의 유기탄소 분포 및 흡수량)

  • Won, Ho-Yeon;Kim, Deok-Ki;Han, Areum;Lee, Young-Sang;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.243-252
    • /
    • 2016
  • Comparison of Organic carbon in the Quercus mongolica and Pinus densiflora forest at Mt. Gumgang were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from September 2013 through August 2014. For the estimation of carbon cycling, soil respiration was measured. The amount of carbon allocated to above and below ground biomass in Q. mongolica and P. densiflora forest was 115.07/34.36, $28.77/8.59ton\;C\;ha^{-1}$, respectively. Amount of organic carbon in annual litterfall in Q. mongolica and P. densiflora forest was 4.89, $6.02ton\;C\;ha^{-1}$, respectively. Amount of organic carbon within 50cm soil depth was 132.78, $59.72ton\;C\;ha^{-1}$ $50cm-depth^{-1}$, respectively. Total amount of organic carbon in Q. mongolica and P. densiflora forest estimated to 281.52, $108.69ton\;C\;ha^{-1}$, respectively. Amount of organic carbon returned to the forest via litterfall in Q. mongolica and P. densiflora forest was 2.83, $2.20ton\;C\;ha^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Q. mongolica and P. densiflora forest was 3.90, $0.81ton\;C\;ha^{-1}yr^{-1}$ respectively. Absorption of organic carbon in Q. mongolica forest was remarkably higher than P. densiflora forest.

Protect Blue Carbon Biomass Habitat and Create a Carbon Reducing Coastal City (블루카본 바이오매스 서식지를 중심으로 한 탄소저감형 해안도시 조성의 필요성)

  • Sun-Ah Hwang
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.134-146
    • /
    • 2023
  • The issue of 'carbon reduction' can be said to be one of the most important issues worldwide. For efficient carbon reduction, it is necessary to consider ways to increase absorption and reduce emissions. Accordingly, much attention has been paid to increasing carbon absorption using blue carbon biomass. Blue carbon biomass refers to an ecosystem related to blue carbon, which has a higher carbon absorption rate than inland ecosystems and a longer collection period. It is very efficient in reducing carbon. Therefore, in this study, a current status survey was conducted on domestic and foreign policies, studies, and plans related to the preservation of blue carbon biomass habitats. Basic research was conducted to prepare plans for future preservation of blue carbon biomass habitats suitable for the domestic environment.

Carbon Storage and Absorption of Trees in the Ecological Restoration Area and Vegetation Conservation Area of Bulamsan Urban Nature Park (불암산 도시자연공원 생태복원지와 식생보전지 수목의 탄소저장량 및 흡수량)

  • Yang, Keum Chul;Kim, Jeong Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.284-293
    • /
    • 2020
  • We present a quantitative survey of the carbon storage and absorption capacity of tree species in the vegetation conservation and ecological restoration areas of Bulamsan urban nature park in Nowon-gu, Seoul. The density of the sawtooth oak (Quercus acutissima) community in the ecological conservation area is approximately 30 individuals/225 ㎡, while a further 20 species, such as Japanese snowbell (Styrax obassia), galcham oak (Quercus aliena), Asian Sweetleaf (Symplocos chinensis f. pilosa), East Asian ash (Fraxinus rhynchophylla), and Korean rhododendron (Rhododendron mucronulatum) are sparsely distributed. In contrast, the ecological restoration sites typically comprised Mongolian oak (Quercus mongolica), jolcham oak (Quercus serrata), and East Asian ash (Fraxinus rhynchophylla) plantations, with planting densities of 8.3, 7.7, and 14.3 individuals/25 ㎡ , respectively. Approximately 10 species, including Amur maple (Acer tataricum subsp. ginnala), Korean mountain ash (Sorbus alnifolia), Japanese spice bush (Lindera obtusiloba), and Korean rhododendron (Rhododendron mucronulatum) were identified in the ecologically restored area. The total amounts of carbon stored by the trees in the vegetation conservation and ecological restoration sites are 250.77 and 19.3 t C ha-1, respectively, and the total annual carbon uptakes are 10.28 and 2.33 t C ha-1 yr-1, respectively. The survey results are expected to provide important basic data for monitoring the carbon absorption capacity and carbon balance of green areas in the city.