• Title/Summary/Keyword: 탄소 수지

Search Result 294, Processing Time 0.026 seconds

Preparation of Activated Carbon Screen Using Stainless Steel Mesh and Cellulose Fiber (스테인레스 망과 섬유를 이용한 활성탄소 망의 제조)

  • Shin, Jinhwan;Kim, Taeyoung;Jeoung, Youngdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • In this work, stainless steel mesh-supported activated carbons were prepared using phenolic resin and cellulose fiber. $ZnCl_2$ was used as a activation reagent in this work. $ZnCl_2$-chemical activation method has been proposed to produce highly porous activated carbons. The objectives of this work were to develop an optimal condition for manufacturing activated carbon assemblies screen from stainless steel mesh and phenolic resin. The iodine number was more increased over activation temperature of $450^{\circ}C$. Iodine number was 657 mg/g at activation temperature of $550^{\circ}C$, penolic resin concentration 20% and $ZnCl_2$ concentration 15%. Iodine number was 1359.4 mg/g when 10% cellulose added to these conditions.

  • PDF

Effect of Diffusion on the Interfacial Adhesion of Poly(hydroxy ether) Coated Caron Fibers (계면확산에 의한 Poly(hydroxy ether) 코팅된 탄소섬유의 계면접착력 변화 연구)

  • 강현민;윤태호
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.15-21
    • /
    • 1999
  • Carbon fibers were coated with carboxy modified poly(hydroxy ether)(C-PHE, water dispersed), water soluble polymers poly(hydroxy ether ethanol amine)(PHEA) or water insoluble poly(hydroxy ether)(PHE). Interfacial shear strength of polymer coated carbon fibers was measured by micro-droplet tests with vinyl ester resin, and approximately 30 samples were tested. The interfacial adhesion of poly-mers to carbon fibers was also evaluated, and diffusion behavior of polymer films in vinyl ester resin was investigated. The carbon fibers after testing and diffusion samples were analysed by SEM in order to understand adhesion mechanism. Interfacial shear strength of carbon fibers was enhanced by the coating of PHE and C-PHE which have good or marginal solubility in vinyl ester resin, respectively, but not by the coating of PHEA possibly due to the poor solubility in vinyl ester resin.

  • PDF

Study on the Flow Characteristics of the Epoxy Resin w.r.t. Sizing Materials of Carbon Fibers (탄소섬유 사이징에 따른 에폭시 수지 유동 특성에 관한 연구)

  • Lim, Su-Hyun;On, Seung Yoon;Kim, Seong-Su
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.379-384
    • /
    • 2018
  • This paper aims to study flow characteristics of epoxy resin w.r.t. the sizing agents treated on the carbon fibers which have the same surface morphologies before sizing treatment. Dynamic contact angle (DCA) was measured to evaluate wettability of a single carbon fiber. Wicking test and Vacuum Assisted Resin Transfer Molding (VARTM) were performed to find relation between DCA measurement results and impregnation characteristics. In addition, surface properties of the carbon fibers such as surface free energy and chemical compositions were measured and interfacial shear strength (IFSS) between the carbon fiber and the resin were experimentally characterized by using micro-droplet tests. According to these experimental results, the sizing agent for carbon fibers should have appropriate level of surface free energy and good chemical compatibility with the resin to reconcile resin flow characteristics and interfacial strength.

Fire Characteristics of Phenolic Resin for Interial Materials of Passenger Train (철도차량 내장재료용 페놀수지의 내열특성)

  • Lee, Cheul-Kyu;Lee, Duck-Hee;Jung, Woo-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.29-34
    • /
    • 2004
  • The time to ignition, heat release rate characteristics, and carbon monoxide yield of fiber reinforced and sandwich phenol resin were investigated with cone calorimeter. The fire characteristics of unsaturated polyester, mostly being applied to the existing passenger train, and phenolic resin were compared. DSC & TGA was used to monitor the degree of thermal decomposition and weight loss for the phenolic resin. According to the cone calorimeter data, the time to ignition was shorter, heat release rate, and CO yield was higher as the external heat flux increased. Under the same heat flux, the time to ignition of sandwich type phenolic resin was shorter than that of laminated. The result of comparison between unsaturated polyester and phenolic resin was that phenolic resin was shown to have better fire resistance than unsaturated polyester.

Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method (전기저항 평가법을 이용한 CNT 함유 에폭시의 탄소섬유내 젖음성 및 계면특성 예측 연구)

  • Kwon, Dong-Jun;Choi, Jin-Yeong;Shin, Pyeong-Su;Lee, Hyung-Ik;Lee, Min-Gyeong;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • As a new method to predict the degree of dispersion in carbon nanocomposites, the electrical resistance (ER) method has been evaluated. After CNT epoxy resin was dropped on CF tow, the change in electrical resistance of carbon fiber tow was measured to evaluate dispersion condition in CNT epoxy resin. Good dispersion of CNTs in carbon nanocomposite exhibited low change in ER due to wetted resin penetrated on CF tow. However, because CNT network was formed among CFs, non-uniform dispersion occurred due to nanoparticle filtering effect by CF tow. The change in ER for poor dispersion exhibited large ER signal change. The change in ER was used for the dispersion evaluation of CNT epoxy resin. Correlation between interlaminar shear strength (ILSS) and dispersion condition by ER method was established. Good CNT dispersion in nanocomposites led to good interfacial properties of fiberreinforced nanocomposites.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

Improvement of Interfacial Adhesion of Plasma Treated Single Carbon Fiber Reinforced CNT-Phenolic Nanocomposites by Electrical Resistance Measurement and Wettability (젖음성 및 전기저항 측정을 이용한 플라즈마 처리된 단일 탄소섬유 강화 탄소나노튜브-페놀수지 나노복합재료의 계면접착력 향상)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.88-93
    • /
    • 2011
  • Optimal dispersion and fabrication conditions of carbon nanotube (CNT) embedded in phenolic resin were determined by electrical resistance measurement; and interfacial property was investigated between plasma treated carbon fiber and CNT-phenolic composites by electro-micromechanical techniques. Wettability of carbon fiber was improved significantly after plasma treatment. Surface energies of carbon fiber and CNT-phenolic nanocomposites were measured using Wilhelmy plate technique. Since surface activation of carbon fiber, the advancing contact angle decreased from $65^{\circ}$ to $28^{\circ}$ after plasma treatment. It was consistent with static contact angle results of carbon fiber. Work of adhesion between plasma treated carbon fiber and CNT-phenolic nanocomposites was higher than that without modification. The interfacial shear strength (IFSS) and apparent modulus also increased with plasma treatment of carbon fiber.

Fabrication of Glassy Carbon from Furan Resin (퓨란수지를 이용한 유리질 탄소의 제조)

  • 임연수;김희석;정윤중;김명수;김지현
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.643-647
    • /
    • 2001
  • 퓨란수지로부터 유리질 탄소를 제조하였다. 유리질 탄소의 제조시, 사용된 수지가 경화 및 탄화 단계에서 많은 양의 가스를 방출하면서 큰 수축이 발생하여 크랙을 형성하고 휨 현상을 일으킨다. 이런 현상을 감소시키기 위하여 본 실험에서는 경화단계에서 압력을 가하고, 가열속도를 매우 느리게 하였다. 또한, 경화단계에서 무게감소와 수축율을 억제하고, 발생하는 가스의 배출을 용이하게 하여 궁극적으로는 시편의 크랙 및 휨 현상을 방지하고자 필러와 알콜을 첨가하였다. 그 결과, 무게감소와 수축을 억제하고 밀도의 증가를 가져왔고 유리질 탄소를 용이하게 제조할 수 있었으나 알코올을 첨가한 경우 필러의 양이 증가할수록 높은 비저항 값과 낮은 강도값을 나타내었다. 이런 현상은 알코올이 경화단계에서 분해 증발하면서 미세한 기포를 형성하고 이것들이 기공으로 전이하여 최종 제품에까지 영향을 주었기 때문이다.

  • PDF

The Study of Improvement of Interlaminar Shear Strength for 2-D Carbon/carbon Composites (2-D 탄소/탄소복합재의 층간전단강도 개선에 관한 연구)

  • 손종석;정구훈;김정일;주혁종;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.118-123
    • /
    • 1999
  • 저밀도 폐놀계 탄소/탄소 복합재의 층간전단강도를 개선하기 위해 흑연분말, 카본블랙, 카본매트, 단섬유 등의 첨가제를 사용하였다. 카본매트와 단섬유를 첨가한 경우, 수지의 부족에 의한 층간접착력의 약화를 가져왔으며, 카본블랙을 첨가한 경우에도 큰 효과를 나타내지 못했다. 흑연을 첨가했을 때 약 30%의 층간강도 개선을 가져왔으며 특히 9 vol.%의 첨가량에 대해서 가장 큰 효과를 보였다.

  • PDF