• Title/Summary/Keyword: 탄소저감효과

Search Result 161, Processing Time 0.025 seconds

An Empirical Study on the effects of volatility of carbon market on stock price volatility : Focusing on Europe iron and cement sector (탄소시장의 변동성이 주가변동성에 미치는 영향에 관한 실증연구 : 유럽의 철강산업과 시멘트산업을 중심으로)

  • Lee, Dong-Woo;Kim, Young-Duk
    • International Area Studies Review
    • /
    • v.21 no.4
    • /
    • pp.223-245
    • /
    • 2017
  • This study is examined interaction between carbon market with stock market using a multivariate GARCH(DCC) model. Carbon market is EU ETS EUA price, stock market is the iron and cement stock price which has relatively energy intensive and massive carbon emissions sector in the industrial sector. It also analyzed changes in the correlation between the markets through an analysis of correlation coefficients. Moreover, it checked whether there was marketability expansion(or expansion of carbon emissions reduction) through the analysis above. As a result of empirical tests, it showed that the price spillover effect was insignificant. In addition, it represented that there was a weak correlation between the two markets since the volatility spillover effect disappeared in the second phase by an external shock(a financial crisis). Moreover, it was revealed that there were no significant changes although there was a weak upward trend in terms of the correlation between the carbon market and the stock market. This implies that emission rights could not expand marketability to financial market as a commodity(or did not play its natural role of the reduction of carbon emission).

Seismic Control of Stiffness-degrading Inelastic SDOF Structures with Fully Elasto-Plastic Dampers (강성저감형 비탄성 단자유도 구조물에 설치된 완전탄소성 감쇠기의 제진성능)

  • Park, Ji-Hun;Kim, Hun-Hee;Kim, Ki-Myon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.37-48
    • /
    • 2010
  • The seismic control effect of reinforced concrete structures with low energy dissipating capacity due to stiffness degradation is investigated through nonlinear time history analysis. The primary structure is idealized as a SDOF system of modified Takeda hysteresis rule and an elasto-perfectly-plastic nonlinear spring is added to represent a hysteretic damping device. Based on statistics of the numerical analysis, equivalent linearization techniques are evaluated, and empirical equations for response prediction are proposed. As a result, estimation of the ductility demand with proposed empirical equations is more desirable than the equivalent linearization techniques. The optimal yield strengths based on empirical equations are significantly different from the optimal yield strength of elasto-perfectly-plastic systems. Also, the results indicate that the reduction effect of the ductility demand is more remarkable for smaller natural periods.

Carbon Reduction and Enhancement for Greenspace in Institutional Lands (공공용지 녹지의 탄소저감과 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi;Kim, Jin-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • This study quantified annual uptake and storage of carbon by urban greenspace in institutional lands and suggested improvement of greenspace structures to enhance carbon reduction effects. The study selected a total of five study cities including Seoul, Daejeon, Daegu, Chuncheon, and Suncheon, based on areal size and nationwide distribution. Horizontal and vertical greenspace structures were field-surveyed, after institutional greenspace lots were selected using a systematic random sampling method on aerial photographs of the study cities. Annual uptake and storage of carbon by woody plants were computed applying quantitative models of each species developed for urban landscape trees and shrubs. Tree density and stem diameter (at breast height) in institutional lands averaged 1.4±0.1 trees/100 ㎡ and 14.9±0.2 cm across the study cities, respectively. Of the total planted area, the ratio of single-layered planting only with trees, shrubs, or grass was higher than that of multi-layered structures. Annual uptake and storage of carbon per unit area by woody plants averaged 0.65±0.04 t/ha/yr and 7.37±0.47 t/ha, which were lower than those for other greenspace types at home and abroad. This lower carbon reduction was attributed to lower density and smaller size of trees planted in institutional lands studied. Nevertheless, the greenspace in institutional lands annually offset carbon emissions from institutional electricity use by 0.6 (Seoul)~1.9% (Chuncheon). Tree planting in potential planting spaces was estimated to sequester additionally about 18% of the existing annual carbon uptake. Enhancing carbon reduction effects requires active tree planting in the potential spaces, multi-layered/clustered planting composed of the upper trees, middle trees and lower shrubs, planting of tree species with greater carbon uptake capacity, and avoidance of the topiary tree maintenance. This study was focused on finding out greenspace structures and carbon offset levels in institutional lands on which little had been known.

Contribution of Advanced or Alternative Process to Carbon-Dioxide Emission Reduction in Olefin Production Plant (올레핀(Olefin) 생산 공정에서 발생하는 이산화탄소 배출 저감을 위한 신기술 적용 효과)

  • Wee, Jung-Ho;Choi, Kyoung-Sik;Kim, Jeong-In;Lee, Sang-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.679-689
    • /
    • 2009
  • Light olefins are very important hydrocarbons widely used as the raw materials of the most petrochemicals including plastics and medicines. In addition, the nation's olefin production capacity is regarded as one of the key indicators to predict the nation's economic scale and growth. Steam cracking of naphtha (or called "NCC (Naphtha Cracking Center) technology"), the traditional process to produce light olefins, is one of the most consuming energy processes among the chemical industries. Therefore, this process causes tremendous $CO_2$ emission. To reduce the energy consumption and $CO_2$ emission from NCC process, the present paper, firstly, investigates and analyses some alternative technologies which can be potentially substituted for traditional process. Secondly, applying the alternative technologies to NCC process, their effects such as energy savings, $CO_2$ emission reduction and CER (Certified Emission Reduction) were estimated. It is found that the advanced NCC process can reduce approximately 35% of SEC (Specific Energy Consumption) of traditional NCC process. This effect can lead to the reduction of 3.3 million tons of $CO_2$ and the acquisition of the 128 billion won of CER per year. Catalytic cracking of naphtha technology, which is other alternative processes, can save up to approximately 40% of SEC of traditional NCC process. This value equates to the 3.8 million tons of $CO_2$ mitigation and 147 billion won of CER per year.

Difference of Direct and Indirect $CO_2$ Uptake Associated with Tree Cover between Residential Neighborhood (주거지구간 수목피도에 따른 직간접적 $CO_2$ 흡수의 차이)

  • 조현길;안태원
    • Korean Journal of Environment and Ecology
    • /
    • v.13 no.3
    • /
    • pp.254-260
    • /
    • 1999
  • 본 연구는 수목피도가 상이한 춘천시 내 두 주거지구를 선정하여 수목식재가 주요 온실가스인 대기 CO_2$의 직접적 간접적 흡수에 영향하는 효과를 비교 분석하였다 수목의 탄소저장량은 수목 피도가 약 10%인 제 1지구에서 단독 주택의 호당 평균 72kg 소목피도가 약 20%인 제 2지구에서 244kg 이었다 수목피도가 제 1지구보다 10% 차이로 더 높은 제 2지구에서 그 탄소저장량은 3배 더 많았다. 수목의 연간 직간접적 탄소흡수량은 제1지구에서 호당 평균 59kg/yr이었고 제 2지구에서는 그보다 약 2배 더 많은 110kg/yr 이었다. 연간 총흡수량중 간접적 흡수량은 연구지구에 따라 70-80%를 차지하여 직접적 흡수량보다 훨씬 많았다. 연구결과는 주거지 내 적극적인 수목식재가 대기 탄소농도를 저감하는 중요한 역할을 증진할 수 있음을 시사하였다.

  • PDF

A Study on Urban Tree Canopy Artificial Intelligence Model for Carbon Neutrality in the Face of Climate Crisis (기후 위기에 맞서 탄소중립을 위한 도시 나무 캐노피 인공지능 모델 연구)

  • Jung, Jisun;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.529-531
    • /
    • 2022
  • 기후 위기가 대두되며 탄소중립에 많은 관심이 쏟아지고 있다. 탄소중립을 실천하기 위한 여러 가지 방법 중 도시의 수목을 관리하는 것은 탄소배출 저감, 대기질 개선 등의 환경적인 긍정적 효과를 얻을 수 있다. 수종별 온실가스 흡수량과 흡수 계수에는 차이가 있지만 도시 나무 캐노피를 증가시키면 온실가스 흡수량도 증가한다. 본 논문은 탄소정보공개 프로젝트(CDP)에서 제공하는 데이터를 기반으로 도시의 녹지 지대를 구글 지도(Google Map) 위성사진을 통해 찾아내고 지니 계수(Gini Coefficient)를 통해 도심 녹지 균형을 비교하였다. 향후 도시 수목과 녹지 데이터를 축적해 기초자료가 쌓이면 도시환경의 지표로 활용될 수 있을 것으로 기대된다.

Carbon Reduction Effects of Urban Landscape Trees and Development of Quantitative Models - For Five Native Species - (도시 조경수의 탄소저감 효과와 계량모델 개발 - 5개 향토수종을 대상으로 -)

  • Jo, Hyun-Kil;Kim, Jin-Young;Park, Hye-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.13-21
    • /
    • 2014
  • This study generated regression models to quantify storage and annual uptake of carbon from five native landscape tree species through a direct harvesting method, and established essential information to estimate carbon reduction effects from urban greenspaces. Tree species for the study included the Chionanthus retusus, Prunus armeniaca, Abies holophylla, Cornus officinalis, and Taxus cuspidata, which are usually planted in cities of middle Korea, but for which no information on carbon reduction is available. Ten tree individuals for each species were sampled reflecting various stem diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute total carbon storage per tree. The annual carbon uptake per tree was quantified by analyzing the radial growth rates of stem samples at breast height or ground level. Regression models were developed using diameter at breast height (dbh) or ground level (dg) as an independent variable to easily estimate storage and annual uptake of carbon per tree for each species. All the regression models showed high fitness with $r^2$ values of 0.92~0.99. Storage and annual uptake of carbon from a tree with dbh of 10 cm were greatest with C. retusus (20.0 kg and 5.9 kg/yr, respectively), followed by P. armeniaca (17.5 kg and 4.5 kg/yr) and A. holophylla (13.2kg and 1.8 kg/yr) in order. A C. officinalis tree and T. cuspidata tree with dg of 10 cm stored 9.3 and 6.3 kg of carbon and annually sequestered 3.2 and 0.6 kg, respectively. The above-mentioned carbon storage equaled the amount of carbon emitted from gasoline consumption of about 23~35 L for C. retusus, P. armeniaca, and A. holophylla, and 11~16 L for C. officinalis and T. cuspidata. A tree with the diameter size of 10 cm annually offset carbon emissions from gasoline use of about 6~10 L for C. retusus, P. armeniaca, and C. officinalis, and 1~3 L for A. holophylla and T. cuspidata. The study breaks new ground to easily quantify biomass and carbon reduction for the tree species by overcoming difficulties in direct cutting and root digging of urban landscape trees.

Carbon Storage and Uptake by Evergreen Trees for Urban Landscape - For Pinus densiflora and Pinus koraiensis - (도시 상록 조경수의 탄소저장 및 흡수 - 소나무와 잣나무를 대상으로 -)

  • Jo, Hyun-Kil;Kim, Jin-Young;Park, Hye-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • This study generated regression models through a direct harvesting method to estimate carbon storage and uptake by Pinus densiflora and Pinus koraiensis, the major evergreen tree species in urban landscape, and established essential information to quantify carbon reduction by urban trees. Open-grown landscape tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the two species by using diameter at breast height (DBH) as an independent variable. All the regression models showed high fitness with $r^2$ values of higher than 0.98. While carbon storage and uptake by young trees tended to be greater for P. densiflora than for P. koraiensis in the same diameter sizes, those by mature trees with DBH sizes of larger than 20 cm showed results to the contrary due to a difference in growth rates. A tree of P. densiflora and P. koraiensis with DBH of 25 cm stored 115.6 kg and 130.0 kg of carbon, respectively, and annually sequestered 9.4 kg and 14.6 kg. The study has broken new grounds to overcome limitations of the past studies which quantified carbon reduction of the study species by substituting, due to a difficulty in direct cutting and root digging of landscape trees, coefficients from forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates.

The Experimental Study on Hydration Properties of Quaternary Component Blended High Fluidity Concrete with CO2 Reduction (탄소저감형 4성분계 고유동 콘크리트의 수화 특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Jo, Jun-Hee;Kang, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.403-413
    • /
    • 2017
  • In this paper, to increase the use of industrial byproducts for $CO_2$ reduction and to improve construction performance, it was manufactured that $CO_2$ reduction type quaternary component high fluidity concrete (QC-HFC) with Reduced cement usage by more than 80% and its quality and hydration characteristics were evaluated. QC-HFC was found to satisfy the target performance, and the flow and mechanical properties were similar to those of conventional concrete. The drying shrinkage of QC-HFC decreased about twice compared with the conventional blend, and the hydration heat decreased about 36%. As a result, it can be concluded that the amount of cracks can be reduced by reducing temperature stress due to hydration heat reduction effect and reducing deformation due to relatively small temperature difference between inside and outside. Also, As a result of the simulation of the mass structure, the temperature cracking index of QC-HFC is 1.1 or more, and the cracking probability is reduced by about 35%, so that the crack due to temperature can be reduced.