• Title/Summary/Keyword: 탄소섬유 복합재료

Search Result 575, Processing Time 0.026 seconds

Electrical and the Mechanical Properties of Graphite particle/carbon fiber hybrid Conductive Polymer Composites (흑연입자/탄소섬유 혼합 보강 전도성 고분자 복합재료의 전기적, 기계적 특성 연구)

  • Heo Seong-Il;Yun Jin-Cheol;Oh Kyung-Seok;Han Kyung-Seop
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.7-12
    • /
    • 2006
  • Graphite particle/carbon fiber hybrid conductive polymer composites were fabricated by the compression molding technique. Graphite particles were mixed with an epoxy resin to impart the electrical conductivity in the composite materials. In this study, graphite reinforced conductive polymer composites with high filler loadings were manufactured to accomplish high electrical conductivity above 100S/cm. Graphite particles were the main filler to increase the electrical conductivity of composites by direct contact between graphite particles. While high filler loadings are needed to attain good electrical conductivity, the composites becomes brittle. So carbon fiber was added to compensate weakened mechanical property. With increasing the carbon fiber loading ratio, the electrical conductivity gradually decreased because non-conducting regions were generated in the carbon fiber cluster among carbon fibers, while the flexural strength increased. In the case of carbon fiber 20wt.% of the total system, the electrical conductivity decreased 27%, whereas the flexural strength increased 12%.

일방향섬유 복합재료의 마찰 및 마모 특성에 관한 연구

  • 정형범;윤재륜
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.64-68
    • /
    • 1998
  • 본 연구에서는 다양한 종류의 섬유를 일방향으로 배향시켜 제작한 복합재료의 트라이볼로지 연구를 수행하였으며 특히 섬유의 배향과 활주속도가 트라이볼로지 성질에 미치는 영향을 연구하였다. 실험에 쓰인 시편은 유리 섬유, 아라미드 섬유, 그리고 고탄성 탄소 섬유를 보강재료로 에폭시 수지를 모재로 사용한 일방향섬유 복합재료이며 각각의 시편을 스테인레스 강 상대 마찰면에 마찰시켜 마모량과 마찰 계수를 구하였다. 실험조건으로 사용한 여러 활주속도에서 탄소섬유복합재료가 모든 섬유배열방향에서 아라미드섬유복합재료와 유리섬유 복합재료보다 마모율과 마찰계수가 낮은 경향을 보였으며 특히 높은 속도에서는 탄소섬유복합재료의 특성이 뛰어남을 알 수 있었다.

  • PDF

Effect of Fabricating Temperature on the Mechanical Properties of Spread Carbon Fiber Fabric Composites (스프레드 탄소섬유 직물 복합재료의 성형온도에 따른 기계적 특성에 관한 연구)

  • Eun, Jong Hyun;Gwak, Jae Won;Kim, Ki Jung;Kim, Min Seong;Sung, Sun Min;Choi, Bo Kyoung;Kim, Dong Hyun;Lee, Joon Seok
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.161-168
    • /
    • 2020
  • In this paper, we have studied the mechanical properties of thermoplastic carbon fiber fabric composites with spread technology and compression molding temperature were investigated. Carbon fiber reinforcement composites were fabricated using commercial carbon fiber fabrics and spread carbon fiber fabrics. Mechanical properties of the commercial carbon fiber composites (CCFC) and spread carbon fiber composites (SCFC) according to compression molding temperatures were investigated. Thermal properties of the polypropylene film were examined by rheometer, differential scanning calorimetry, thermal gravimetric analysis. Tensile, flexural and Inter-laminar shear test. Commercial carbon fiber reinforcement composites and spread carbon fiber composites were fabricated at 200~240℃ above the melting temperature of the polypropylene film. Impregnation properties according to compression molding temperature of the polypropylene film were investigated by scanning electron microscopy. As a result, as the compression molding temperature was increased, the viscosity of the polypropylene film was decreased. The mechanical properties of the compression molding temperature of 230℃ spread carbon fiber composite was superior.

Review of the Composite Materials Application to the Solid Rocket Motor Cases (복합재료의 고체 로켓 모터 케이스 적용 리뷰)

  • Lee, Tae-Ho
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper investigated the composite materials application examples and trends in the future to the solid rocket motor cases. The motor case must be stiff and tolerate at the high pressures, and light weight. In accordance to these kind of requirements, the composite materials showed the adaptable efficiency, and glass fibers, aramid, carbon fibers are applied to orderly. The comparison of the motor case efficiencies of the D6AC steel alloy, aramid, carbon fibers results in the carbon fibers best. Also the capacity of the payload will be increased more than 20% by using the high strength ones.

Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment (탄소섬유 표면처리에 따른 탄소섬유/폴리프로필렌 복합재료의 기계적 물성 평가)

  • Han, Song Hee;Oh, Hyun Ju;Kim, Seong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.791-796
    • /
    • 2013
  • In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XPS, SEM, and single-filament tensile test. The interlaminar shear strength (ILSS) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the ILSS of the plasma-treated specimen increased with the treatment time. The ILSS of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen.

Cutting(Milling) Characteristics of Carbon Fiber/Epoxy Composites (탄소섬유 에폭시 복합재료의 절삭(밀링) 특성)

  • 김기수;이대길;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.37-42
    • /
    • 1990
  • Carbon fiber epoxy composite materials are widely used in the structures of aircrafts, robots and other machines because of their high specific stiffness, high specific strength and damping. In order for the composite materials to be used in the robot structure or machine element, bearing mounting and joining surfaces must be provided, which require accurate machining. In this paper, the machinability and tool wear characteristics of the milling operation of the carbon fiber epoxy composite materials were experimentally measured. The tool wear mechanism and the Taylor tool wear constants were determined. Also, the surface roughness of milling operation was measured w.r.t. cutting speed and feed.

Effects of Sizing Treatment of Carbon Fibers on Mechanical Interfacial Properties of Nylon 6 Matrix Composites (탄소섬유의 사이징처리가 탄소섬유/나일론6 복합재료의 기계적 계면 특성에 미치는 영향)

  • Park, Soo-Jin;Choi, Woong-Ki;Kim, Byung-Joo;Min, Byung-Gak;Bae, Kyong-Min
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.2-6
    • /
    • 2010
  • The sizing treatments of PAN-based carbon fiber surfaces were carried out in order to improve the interfacial adhesion in the carbon fibers/nylon6 composite system. The parameter to characterize the wetting performance and surface free energy of the sized fibers were determined by a contact angle method. The mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of sized CFs/nylon6composites were observed by SEM. As the experimental results, it was observed that silane-based sizing treated carbon fibers showed higher surface free energies than other sizing treatments. In particular, the KIC of the sizing-treated carbon fibers reinforced composites showed higher values than those of untreated carbon fibers-reinforced composites. This result indicated that the increase in the surface free energy of the fibers leads to the improvement of the mechanical interfacial properties of carbon fibers/nylon6 composites.

Method for Determining Fiber Volume Fraction in Carbon/Epoxy Composites Considering Oxidation of Carbon Fiber (탄소섬유 산화 현상을 고려한 탄소복합재료의 섬유체적비 측정법)

  • Kim, YunHo;Kumar, Sathish;Choi, Chunghyeon;Kim, Chun-Gon;Kim, Sun-Won;Lim, Jae Hyuk
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.311-315
    • /
    • 2015
  • Measuring fiber volume fraction properly is very important in designing composite materials because the fiber volume fraction mainly determines mechanical and thermal properties. Conventional Ignition methods are effective for ceramic fiber reinforcing composite materials. However, these methods are not proper for applying to carbon fiber reinforcing composites because of the venerable characteristic against oxidation of carbon fiber. In the research, fiber volume fraction of carbon fiber composites was obtained by a thermogravimetric analysis considering oxidation characteristic of the carbon fiber and the method was compared and verified with the results from microscopic cross section images.

Studies of Electroless Ni-plating on Surface Properties of Carbon Fibers and Mechanical Interfacial Properties of Composites (화학환원 니켈도금 처리에 따른 탄소섬유 표면 및 복합재료의 기계적 계면 특성)

  • 박수진;장유신;이재락
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.218-225
    • /
    • 2001
  • The electroless plating of a metallic nickel on PAN-based carbon fiber surfaces was carried out to improve mechanical interfacial properties of the carbon fiber/epoxy resin composites which were unidirectionally fabricated by a prepregging method. In this work, the influence of Ni-P alloy concentration showing brittle-to-ductile transition was investigated on interlaminar shear strength (ILSS) and impact strength of the composites. The surface properties of carbon fibers were also measured by X-ray photoelectron spectroscopy (XPS). As the result, the $O_{ls}$ /$O_{ls}$ ratio or Ni and P amounts were increased with increasing electroless nickel plating time but the ILSS were not significantly improved. However, the impact properties was significantly improved in the presence of Ni-P alloy in the carbon fiber surface, resulting in an increase of the ductility of the composites.

  • PDF

Effect of State of Stress on Compressive Failure in Carbon-Fiber/Epoxy Composites; (탄소섬유/에폭시 복합재료의 압축파괴 거동에 부하 스트레스 상태가 미치는 영향)

  • ;S.R. Swanson
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.113-120
    • /
    • 1995
  • 여러가지 두꺼운 복합재료 구조물은 3차원 압축 부하 상태에 노출되는 경우가 발생한다. 이런 경우에 있어 서의 복합재료 압축 강도는 압축 평균 응력을 이용하면 예측이 가능할지도 모른다. 이번 연구 에서는 압축 평균 응력을 이용하여 탄소섬유 강화 복합재료들의 압축 강도를 예측하는 모델을 개발 하고자 한다. 이 모델은 압축강도에 영향을 주는 요소, 초기 misalignment를 고려하였고, 탄소섬유와 수지사이에 접합강도가 임계값을 초과할때 복합재료의 파괴가 일어난다고 가정한다. 또 여라가지 문헌들을 통하여 유압이 접합강도에 미치는 점들을 보여준다. 본 모델을 이용한 예측값들은 가해지는 유압에 따라 증가되며, 실험값들과 비교 분석될 것이다.

  • PDF