• Title/Summary/Keyword: 탄소섬유튜브기둥

Search Result 6, Processing Time 0.025 seconds

The Flexural Behavior of a Circular Concrete Filled Carbon Tube Columns under the Constant Axial Force with Reversed Cyclic Lateral Load (축하중과 반복 횡하중을 받는 콘크리트 충진 원형 탄소섬유 튜브 기둥의 휨거동특성)

  • Hong, Won-Kee;Kim, Hee-Cheul;Chung, Jin-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 2004
  • The purpose of this study is to investigate the flexural behavior of circular concrete filled carbon tube(CFCT) columns subjected to constant axial load with the cyclic lateral load. Six numbers of composite columns were tested. Two parameters, winding angle and thickness of tube, were chosen to evaluate the flexural capacity and behavior of CFCT columns. Selected two parameters were considered simultaneously in order to evaluate the flexural behavior of CFCT columns more precisely. Flexural strength, deformation capacity, ductility and energy dissipation capacity of CFCT columns were evaluated by calculating the area of load-displacement envelop curves and load-displacement hysteresis curves obtained from experiment. Also, the ductile capacity obtained from experiment were compared to that of reinforced masonry wall for the comparison of existing structural element.

The Flexural Behavior of a Square Concrete Filled Carbon Tube Columns under the Constant Axial Force with Reversed Cyclic Lateral Load (축하중과 반복 횡하중을 받는 콘크리트 충진 각형 탄소섬유 튜브 기둥의 휨거동특성)

  • Kim, Hee-Cheul;Hong, Won-Kee;Lee, Hyun-Ju
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.1-10
    • /
    • 2004
  • The purpose of this study is to investigate the flexural behavior of square concrete filled carbon tube (CFCT) columns subjected to constant axial load with the cyclic lateral load. Two parameters, wnding angle and thickness of tube, were chosen to evaluate the flexural capacity and behavior of rectangular CFCT columns. Selected two parameters were considered simultaneously in order to evaluate the flexural behavior of a rectangular CFCT columns more precisely. Flexural strength, deformation capacity, ductility and energy dissipation capacity of rectangular CFCT columns were evaluated by calculating the area of load-displacement envelope curves and load-dispalcement hysteresis curves obtained from experiment. Also, the ductile capacity obtained from experiment was compared to that of reinforced masonry wall for the comparison of existing structural element.

Capacity of Concrete Filled Carbon Tube Columns Based on the Comparison of Ductility and Energy Dissipation Capacity (연성도 및 에너지 소산능력 비교에 따른 콘크리트충전 탄소섬유튜브 기둥의 성능)

  • Lee, Kyoung-Hun;Hong, Won-Kee;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.29-35
    • /
    • 2007
  • Flexural capacity estimation test of concrete filled carbon tube (CFCT) column under the cyclic lateral load was carried out in this study. Thickness of carbon tube and winding angles of carbon fiber were chosen as test parameters and two types of column with square and circular sections were manufactured. To act axial and lateral load, three dynamic actuators were used and all specimens were made with actual size. Flexural stiffness, ability of deformation, energy dissipation capacity and ductility behavior. of CFCT column were analyzed with test data.

Strength Characteristics of Square Concrete Column Confined by Carbon Composite Tube (탄소섬유튜브로 횡구속된 각형 콘크리트 기둥의 압축강도 성능에 관한 연구)

  • 홍원기;김희철;윤석한;박순섭
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The carbon composite tube can play an important role in replacing or complementing longitudinal and transverse reinforcing steels by providing ductility and strength for conventional columns. In this study, both the experimental and analytical investigations of axial behavior of large-scale square concrete columns confined by carbon composite tube are presented. The specimens are filament-wound carbon composite with 90$^{\circ}$+30$^{\circ}$, 90$^{\circ}$+45$^{\circ}$ winding angle respect to longitudinal axis of tube. The instrumented large-scale concrete-filled composite tubes(CFCT) are subjected to monotonic axial loads exerted by 10,000kN UTM. The influence of winding angle, thickness of tube on stress-strain relationships of the confined columns is identified and discussed. Proposed equations to predict both the strength and ductility of confined columns by carbon composite tube demonstrate good correlation with test data obtained from large-scale specimens.

A Study of Strength Reduction Factor Preparation for Circular Concrete Columns confined by Carbon Sheet Tube (카본시트튜브로 구속된 원형 콘크리트 기둥의 강도감소계수 제안에 관한 연구)

  • Lee, Kyoung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.106-112
    • /
    • 2016
  • In this study, circular concrete column specimens confined by carbon sheet tube with different winding angles and different number of carbon sheet plies(3T, 5T and 7T) were tested to propose design equations and a strength reduction factor. Specimens were designed by 300 mm diameter and 600 mm height with $90^{\circ}{\pm}0^{\circ}$, $90^{\circ}{\pm}30^{\circ}$, $90^{\circ}{\pm}45^{\circ}$, $90^{\circ}{\pm}60^{\circ}$, $90^{\circ}{\pm}75^{\circ}$ and $90^{\circ}{\pm}90^{\circ}$ carbon fiber angles. A 10,000 kN UTM was used for compressive strength test of specimens by displacement control method with 0.01 mm/sec velocity. Estimation equations of compressive strength and ultimate strain of circular concrete column specimens confined by carbon sheet tube using a regression analysis and a strength reduction factor to apply ultimate strength design method of concrete were proposed. The strength reduction factor(${\phi}$) of circular concrete columns confined by carbon sheet tube was estimated as 0.64 by the Monte Carlo Analysis Method. Manufacture and construction process have to be perfectly managed by construction managers because the structural capacities of carbon tubes were depends on construction abilities of manufacturing operators.

Nonlinear finite element analysis of Concrete Filled Carbon Tube Columns Using Plasticity Theory (축하중을 받는 콘크리트 충전 탄소섬유튜브 기둥의 소성 이론을 적용한 비선형 유한요소해석)

  • Kim, Heecheul;Seo, Sang Hoon;Lee, Young Hak
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.119-126
    • /
    • 2007
  • In the field of composite structures, the use of carbon tube for the confinement of concrete has been arisen since 1990's. However, experimental and analytical studies were limited to those of reinforced concrete and concrete filled steel tube. The carbon tube provides excellent confinement capabilities for concrete cores, enhancing compressive strength and ductility of concrete significantly. The carbon tube has high tensile strength, light weight, corrosion immunity and high fatigue strength properties. Since carbon fiber is an anisotropic material, carbon tube could be optimized by adjusting the fiber orientation, thickness and the number of different layers. In this study, both experimental and analytical studies of axial and lateral behavior of full-scale CFCT (Concrete Filled Carbon Tube) columns subjected to monotonic axial load were carried out using Drucker-Prager theory. And, based on comparison results between experiment results and analytical results, k factor estimation was proposed for effective analysis.