• Title/Summary/Keyword: 탄소섬유복합재료

Search Result 575, Processing Time 0.024 seconds

A Numerical Study on Resistance Performance According to the Draft CFRP Composite Canoe (탄소섬유를 적용한 카누의 흘수에 따른 저항성능에 대한 수치적 연구)

  • Kim, Ju Yeol;Kim, Junho;Joung, Jae Ha;Lim, Jongkil;Ra, Inkang;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.876-883
    • /
    • 2016
  • In this study, we selected CFRP to construct a canoe hull. A ship design was made using a commercial ship design program, SOLIDWORKS, and a flow analysis of the canoe on a free surface was calculated using STAR-CCM+. A flow field and waveform were obtained in this way. These results were used to check the resistant performance of the canoe. Results showed that if the draft is 0.09 m, it is safe to run at less than 4 m/s, and if draft is 0.24 m, it is safe to run at less than 2 m/s. Moreover, it was confirmed that those speeds can be made by two adults. The developed canoe, which is 20 % lighter in comparison with conventional FRP models, was briefly introduced in this paper.

Friction and Wear Properties of Fiber Reinforced Composite (섬유보강 복합재의 마찰 및 마모특성)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok;Hong, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.733-740
    • /
    • 1994
  • Oxidized-PAN fiber reinforced composite(OFRP), carbon fiber reinforced composite(CFRP), aramid fiber reinforced composite(AFRP), and glass fiber reinforced composite(GFRP) were fabricated with phenolic resin matrix by hot press molding. We tested the friction coefficient and wear rate varying with fiber weight fraction and observed the effect of fibers according to characteristics of individual reinforcement. When the amount of aramid fiber was 45wt%, average friction coefficient was maximum value of 0.353~0.383, where as, when the amount of pitch based carbon fiber was 45wt%, average friction coefficient was the lowest value of 0.164~0.190. The wear rate of AFRP and CFRP was low, but that of GFRP and OFRP increases drastically in the case of increasing of fiber weight fraction. Wear diagram of OFRP was unstable, but that of CFRP and AFRP was a bit stable. Through very unstable diagram of GFRP, we found that friction stability of GFRP was the lowest.

  • PDF

Characterization of Water Absorption by CFRP Using Air-Coupled Ultrasonic Testing (공기결합 초음파탐상에 의한 CFRP 복합재의 흡습 특성 평가)

  • Lee, Joo-Min;Lee, Joo-Sung;Kim, Yong-Kwon;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.155-164
    • /
    • 2014
  • Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at $75^{\circ}C$ for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

Tribological characteristics of short fiber reinforced composites (단섬유 보강 복합재료의 트라이볼로지 특성)

  • 윤재륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1238-1245
    • /
    • 1988
  • Friction and wear characteristics of short fiber reinforced and particulate filled composites were investigated experimentally. Two kinds of fiber composites, chopped graphite fiber reinforced PAI(polyamide-imide) and glass fiber reinforced PAI, and a particulate composite, TiO$_{2}$ powder filled PAI, were selected for the friction and wear test since these are important engineering materials based on a new high temperature engineering plastic. All the specimens were cut into proper size for cylinder-on-plate type wear test. Frictional forces were measured by employing a load transducer and wear rates were calculated by measuring weight loss during wear test. The experimental results are reported in this paper and carefully discussed to explain the friction and wear behavior qualitatively. The frictional behavior is interpreted by considering four basic friction components which are believed to the genesis of friction and the wear behavior is explained by applying delamination theory of wear.

Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(I) - Electrodeposition of MVEMA and EMA (탄소섬유 표면에의 고분자 전착과 복합재료 물성(I) - MVEMA와 EMA의 전착 -)

  • Kim, Minyoung;Kim, Jihong;Kim, Wonho;Kim, Booung;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.894-900
    • /
    • 1998
  • An interphase between carbon fiber and epoxy matrix was introduced to increase impact strength of carbon fiber reinforced composites (CFRC) without sacrificing the interlaminar shear strength. Flexible polymers, I. e., MVEMA (poly(methyl vinyl ether-co-maleic anhydride)) and EMA(poly(ethylene-co-maleic anhydride)), which have reactive functional groups were considered as interphase materials. Weight hain of MVEMA and EMA onto the surface of carbon fibers was evaluated by changing the parameters of electrodeposition process. Electrodeposition mechanism of polymers which have anhydride functional group was identified by IR spectroscopy, that is, the generation of $RCOO^-$ functional group by the attack of hydroxide anion in the basic solution was observed. The weight gain was increased by increasing concentration of polymers, current density, and electrodeposition time. However the excess generation of oxygen gas decreased the weight gain by removing the deposited polymers. Washing in the running water easily removed the deposited polymers which are on the fiber surface without bonding, as a results, only 0.5 wt% of deposited polymers are remained.

  • PDF

Evaluation and Modification of Tensile Properties of Carbon Fiber Reinforced Polymer(CFRP) as Brittle Material with Probability Distribution (확률분포를 이용한 취성재료 특성의 탄소섬유보강폴리머 인장물성평가 및 보정)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • Carbon Fiber Reinforced Polymers(CFRP) has widely utilized as a material for rehabilitation because of its light-weight, deformability and workability. Because CFRP is brittle material whereas steel is ductile, it is inappropriate to apply conventional design approach for steel reinforcement. For ductile material, the behavior of combined elements is on average of that of unit element due to the stress redistribution between elements after yielding. Therefore, the mean value of the stress of combined elements is equal to that of unit element and the standard variation is smaller. Therefore, although the design value can increase, it is used as constant value because it is conservative and practical approach. However, for brittle material, the behavior of combined elements is governed by the weaker element because no stress redistribution is expected. Therefore, both the mean value and standard variation of the stress of combined elements decreases. For this reason, the design value would decrease as the number of element increases although it is eventually converged. In this paper, in brittle material, it is verified that the combination of unit element with normal distribution results in combined element with weibull distribution, so the modifying equation of mechanical properties is proposed with respect to the area load applied.

Effect of Overlap Design on the Impact Characteristics of Piecewise Integrated Composite Plates (구간 조합 복합재료 판의 충격 특성에 미치는 겹침부 설계에 관한 연구)

  • Hui-Yun Hwang;Monem Moktadir;Asif Istiak
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • Composite structures have been designed by stacking the laminae with different stacking angles to meet the required mechanical performance. Although the induced stresses on the composite structures under the external loads usually differ depending on the location, we determined the stacking sequence based on the maximum stress, which leads to low efficiency and generally is not the optimum design. Recently, piecewise integrated composites (PICs) were suggested for solving this inefficiency. PICs assume the perfect bonding between adjacent pieces, but this is ideal and hard to accomplish. Therefore, the overlap at the boundary is essential to prevent separation from each other. In this study, we investigated the effect of the overlap design on the impact failure mode of PIC plates. We fabricated the sample composite plates with different overlap designs using the fast curing carbon prepreg and conducted the impact tests according to ASTM D 7136. We found that PICs had different failure modes according to the overlap design, which lead the changes of absorbed impact energies as well as impact load curves.

Evaluation of the Fatigue Life for Carbon/Epoxy Composite Material by the Residual Strength Degradation Analysis (탄소섬유/에폭시 복합재료의 잔류강도 저하해석에 의한 피로수명 평가)

  • 심봉식;성낙원;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1908-1918
    • /
    • 1991
  • Fatigue tests have been carried out to measure the degradation of the residual strength and the fatigue life in carbon/epoxy (0/45/90/-45)$_{2s}$ composite materials. Theoretical predictions of residual strength and fatigue life were compared with experimental results. Distribution characteristics were studied using the probability of failure based on the cumulative distribution function and median rand. The static ultimate strength of carbon/epoxy composites used herein is observed to be relatively higher than that of existing similar composites ; while fatigue life is shorter due to the brittleness of matrix. The fatigue life obtained in these experiments is shorter than that estimated by residual strength degradation model when the stress level above 0.6 For the stress level of 0.6, the experimental value was abruptly increased. The cumulative distribution function for the static ultimate strength is well correlated to that for the strength converted from the measured fatigue life. Also, the predicted distribution of residual strength shows good agreement with the experimental results. Therefore, it is proven that the residual strength degradation model is reasonable.e.

Study of Failure Criterion of Hole-Notched Plain-Weave Carbon Fiber Reinforced Plastic (CFRP) Composites (홀 노치를 포함한 평직 탄소섬유강화플라스틱의 파괴기준 연구)

  • Kim, Sang-Young;Geum, Jin-Hwa;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.481-486
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic (CFRP) have been used in various fields because of its high specific modulus, and chemical properties. Most products in which CFRP composites are used are manufactured by joining the product components by bolts or pins. Holes for bolts and pins decrease the strength of the components because these holes act as notches in the structures. In this study, the fracture strength of CFRP plain-weave composite plates containing holes is experimentally investigated to examine the effects of hole-size and specimen width on notched tensile strength. The results show that the characteristic length considered in the point stress criterion depends on the hole size and specimen width. There exists a certain relation between notched tensile strength and characteristic length. Fracture criterion is redefined on basis of this relation.

Analysis of Characteristics of CFRP Composites Exposed Under High-Temperature and High-Humidity Environment for a Long Period (고온 다습한 환경에 장기간 노출된 CFRP 복합재료의 특성 분석)

  • Hong, Suk-Woo;Ahn, Sang-Soo;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.889-895
    • /
    • 2012
  • Carbon fiber reinforced plastic (CFRP) composites have high specific stiffness and high specific strength. Therefore, they are increasingly being use, instead of conventional metallic materials in the aviation and automobile industries, where there is a strong demand for lightweight materials. In aircraft, the fuselage is exposed to severe conditions of high temperatures and high humidity. Therefore, it is necessary to estimate the strength of CFRP composites under real conditions from the viewpoint of aircraft safety. In this study, CFRP specimens were immersed in distilled water at $75^{\circ}C$ for a long time. Then, tensile tests were performed on these specimens, and the fracture characteristics of the fractured surfaces were analyzed using SEM. A fatigue test was performed on specimens immersed for 300 days with R=0.1, and it was confirmed that the fatigue life deteriorated in immersed specimens compared to specimens that were not immersed.