• 제목/요약/키워드: 탄소나노재료

검색결과 586건 처리시간 0.022초

탄소나노튜브를 이용한 전자파 차폐재 (Electromagnetic interference shielding materials using carbon nanotubes)

  • 윤호규
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.33-36
    • /
    • 2003
  • AC and DC conductivity of the MWNT(Multi walled nanotubes)/polyurethane composites were investigated with respect to the various oxidative conditions, where these means acid concentration, treatment temperature, and treatment time. We suppose that the conditions of oxidation of the MWNTS have a certain influence on the degree of functionalization, damages, and dispersion of the MWNT themselves. Futhermore, the electrical properties of the resulting composites strongly depend on the oxidative conditions of MWNTS. The conductivity of the composites produced by using the optimal condition was measured as a function of frequency with volume content of MWNTS. These experimental results were analyzed using percolation theory Electromagnetic interference shielding effectiveness (SE) of the mixtures of polyurethane (PU), optimized MWNTs, and silver (Ag) is measured in the frequency range from 10 MHz to 6 ㎓ by using ASTM D4935-89. The measured SEs of the mixtures could be controlled from about 55 dB to 85 dB with the compositions of Ag/MWNT and compounding methods(C1, C2).

  • PDF

탄소나노튜브 전극에 의한 진공 방전 특성의 평가 (Electrical discharge properties in vacuum by carbon nanotube electrodes)

  • 김현진;이상훈;김성진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 반도체 재료 센서 박막재료 전자세라믹스
    • /
    • pp.60-63
    • /
    • 2004
  • Recently, carbon nanotubes(CNTs) have been demonstrated to possess remarkable mechanical and electronic properties, in particular, for field emission applications. Its high aspect ratio and extremely small diameter, hollowness, together with high mechanical strength and high chemical stability, are advantages for use in field emitter. In this paper, we demonstrate electrical discharge properties from carbon nanotube cathode electrodes to use as an emitter electrode of vacuum gauges. Vertically aligned $2{\times}2mm^2$ CNT arrays on the silicon substrate were synthesized by the thermal CVD method on Fe catalytic metal, and a glass patterning by the sand blast method and the silicon/glass anodic bonding processes were applied to make samples with 2 electrodes. The field emission was examined under the vacuum range of $10^{-3}$ Torr.

  • PDF

탄소나노튜브 트랜지스터 제작 (Fabrication of CNT Field Effect Transistor)

  • 박용욱;윤석진
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.389-393
    • /
    • 2007
  • We fabricated field-effect transistor based carbon nanotubes(CNTs) directly grown by thermal chemical vapor deposition(CVD) and analyzed their performance. The Ethylene ($C_2H_4$), hydrogen($H_2$) and Argon(Ar) gases were used for the growth of CNTs at $700\;^{\circ}C$. The growth properties of CNTs on the device were analyzed by SEM and AFM. The electrical transport characteristics of CNT FET were investigated by I-V measurement. Transport through the nanotubes is dominated by holes at room temperature. By varying the gate voltage, we successfully modulated the conductance of FET device by more than 7 orders of magnitude.

반도체 탄소나노튜브의 산화열처리 효과 (The Oxidation Effect of Semiconductor Carbon Nanotube)

  • 김좌연;박경순
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.126-127
    • /
    • 2005
  • Semiconductor carbon nanotube was grown on oxided silicon wafer with Atmosphere Pressure Chemical Vapor Deposition (APCVD) ethmod and investigated the electrical property after thermal oxidation at 300$^{\circ}C$ in air. The electrical property was measured at room temperature in air after thermal oxidation at 300$^{\circ}C$ for various times in air. Semiconductor carbon nanotube was steadily changed to metallic carbon nanotube as increasing of thermal oxidation times at 300$^{\circ}C$ in air.

  • PDF

Hybrid Silver Nanowire를 이용한 복합 전극 전도성에 대한 연구

  • 이수민;이재혁;이철승;김광범;김선민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.275-275
    • /
    • 2011
  • 전극에 응용할 수 있는 소재 중 탄소나노소재는 구리와 비슷한 전기 전도성을 가지며 박막 코팅 시 투명성이 보장되고 코팅력이 매우 우수하다. 하지만 현재 다양한 분야에 응용되고 있는 투명전극 소재인 Indium tin oxide (ITO)를 대체하기에는 아직 이른 실정이다. 또 다른 투명전극 응용 소재인 silver nanowire는 전기 전도성이 우수한 반면 투명 전극으로서 두께가 두꺼워질수록 Haze 발생과 기판과의 부착력, 박막형성 뒤의 내구성 문제가 있다. 본 연구에서는 상기 두 재료를 결합하여 복합 전극을 만들어 두 재료의 복합 비율에 따른 투명성과 전기 전도성을 비교하였다.

  • PDF

띠 모양의 에미터를 가지는 탄소나노튜브 삼전극 전계방출 디스플레이 소자의 시뮬레이션 (Simulation of the Strip Type CNT Field Emitter Triode Structure)

  • 류성룡;이태동;김영길;변창우;박종원;고성우;천현태;고남제
    • 한국전기전자재료학회논문지
    • /
    • 제16권11호
    • /
    • pp.1023-1028
    • /
    • 2003
  • The field emission characteristics are studied by simulation for carbon nanotube triode structures with a strip-shaped emitter and a gate hole aligned with it. Two structures, one with double-edge and the other with single edge are analyzed. They show good emission characteristics. Emissions of electrons are concentrated on the edges of emitter and the emitted current increases as the distance between emitter and gate decreases. For single-edged emitter, the emitted electrons form a narow strip-shaped beam which has a good directionality. These triode structures have advantages in that they can be easily fabricated and aligned for assembly.

단층 탄소나노튜브의 암모니아 가스에 대한 감응특성과 열처리 효과 (NH3 Gas Sensing Characteristics of Single-Walled Carbon Nanotubes and Heating Effect)

  • 허증수;이상태;김민주;윤광현
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.276-280
    • /
    • 2004
  • Carbon nanotubes(CNT) were synthesized by arc-discharge method. To fabricate CNT sensor, CNT powder was dispersed in $\alpha$-Terpinol($C_{10}$ $H_{17}$OH) solution. The CNT films were fabricated by screen printing on the interdigitated Pt/Pd alloy electrode. The microstructure of CNT film were observed by scanning electron microscopy (SEM). In order to investigate the gas sensing characteristics of the film, the CNT film was experimented to measure NH$_3$ response and recovery time. And this sensor shows better reproductibility and faster recovery time than another CNT sensors. We suggest the possibility to utilize a CNT as new sensing materials for environmental monitoring.

탄소나노튜브 전극으로부터 전자방출에 의한 진공도 측정 (Measurement of Vacuum Pressure by Electron Emission from Carbon Nanotube Emitters)

  • 김성진;조규환;김성엽;전재옥;이상훈;최복길
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.396-400
    • /
    • 2005
  • Carbon nanotubes (CNTs) have been well known as electron emitters for field emission applications like FEDs. In this work, we propose as new application a vacuum sensor using CNTs and discuss its current-voltage characteristics as a function of vacuum pressure. The proposed sensor, based on electrical discharge theories in air gap well-known as Townsend theory and as Paschen's law, works by figuring out the variation of the dark current and the initial breakdown voltage depending on the vacuum pressure of air which can ionize through collisions with the electrons accelerated by high electric field.

Ni 박막 촉매 Etching 조건에 따른 탄소나노튜브 성장 (Growth of Carbon Nanotubes Depending on Etching Condition of Ni-catalytic Layer)

  • 정성희;장건익;류호진
    • 한국전기전자재료학회논문지
    • /
    • 제14권9호
    • /
    • pp.751-756
    • /
    • 2001
  • Carbon nanotubes(CNTs) was successfully grown on Ni coated silicon wafer substrate by PECVD technique(Plasma Enhanced Chemical Vapor Deposition). As a catalyst, Ni thin film of thickness ranging from 15∼30nm was prepared by electron beam evaporator system. In order to find the find the optimum growth condition, initially two different types of gas mixtures such as C$_2$H$_2$-NH$_3$ and C$_2$H$_2$-NH$_3$-Ar were systematically investigated by adjusting the gas mixing ratio in temperature of 600$^{\circ}C$ under 0.4 torr. The diameter of the grown CNTs was 40∼200nm. The diameter of the CNTs increases with increasing the Ni particles size. TEM images clearly demonstrated synthesized nanotubes to be multiwalled.

  • PDF

집적화된 3 극형 탄소 나노 튜브 전자 방출원의 제작 (Fabrication of Integrated Triode-type CNT Field Emitters)

  • 이정아;문승일;이윤희;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제17권2호
    • /
    • pp.212-216
    • /
    • 2004
  • In this paper, we have fabricated a triode field emitter using carbon nanotubes (CNTs) directly grown by thermal chemical vapor deposition(CVD) method as an electron omission source. Vertically aligned CNTs have been grown in the center of the gate hole, to the size of 1.5 ${\mu}{\textrm}{m}$ in diameter, with help of a sacrificial layer of a type generally used in metal tip process. By the method of tilling the substrate, we made CNTs emitters both with and without SiO$_2$layer, a sidewall protector, deposited on sidewall of gate. After that we researched the electrical characteristics about two types of emitters. In effect, a sidewall protector can enhance the electrical characteristics by suppressing the problem of short circuits between the gate and the CNTs. The leakage current of an emitter with a sidewall protector is approximately sevenfold lower than that of an emitter without it at a gate voltage of 100 V.