• Title/Summary/Keyword: 탄성파 진폭

Search Result 112, Processing Time 0.07 seconds

A Short Seismic Reflection Survey for Delineating the Basement and the Upper Units of the Gomso Bay, Yellow Sea (곰소만 지역의 기반암 및 상부 층서 파악을 위한 시험 탄성파반사법 탐사)

  • Kim Ji-Soo;Ryang Woo-Hun;Han Soo-Hyung;Kim Hak-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.161-169
    • /
    • 2006
  • A short seismic reflection survey was performed to map the basement and the upper units in the Gomso Bay. This research was mainly aimed at clarifying the basement by improving the signal-to-noise ratio in data processing steps. The strategies employed in this research included enhancement of the signal interfered with large-amplitude noise, through pre- and post-stack processing such as time-variant filtering, bad trace edit, careful muting after f-k filter and NMO correction. The subsurface structure mapped from this survey mainly consists of the top of basement and the upper three units, which were well correlated to the result from the previously conducted MT survey. Furthermore seismic section clarifies approximately 30m deep subhorizontal event of the top of the basement, which was not shown in the central portion of the MT section due to data qualify.

Q Estimates Using the Coda Waves in the Kyeongsang Basin (Coda 파를 이용한 경상분지에서의 Q값 추정)

  • 이기화
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.67-74
    • /
    • 1999
  • In this study, coda Q has been determined by the single scattering model in the Kyeongsang Basin region using the decay of the amplitudes of coda waves on bandpass-filtered seismograms of local microearthquakes in the frequency range 1.5~18 Hz. Reported frequency dependence of Q is of the form $Q_C=Q_O ^n$$(83.9{ll}Q_0{ll}155.9,;0.76{ll}n{ll}1.05$. Considering a model incorporating both scattering and intrinsic attenuation, and assuming that the attenuation is entirely due to the scattering loss, the minimum mean free paths are about 51~56 km and the coefficients of inelastic attenuation(${\gamma}$) are between 0.0093 and 0.0098 were found. Earthquake-station paths pass through the fault zone show high attenuation and strong frequency dependency compared to other ones.

  • PDF

Optimum Quality Control of Seismic Data of Kunsan Basin in Offshore Korea (국내대륙붕 군산분지에 대한 탄성파 전산처리의 최적 매개 변수 결정)

  • Kim, Kun-Deuk
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.161-169
    • /
    • 1998
  • The Kunsan basin is a pull-apart basin which was formed during Tertiary. The pre-Tertiary section consists of various rock types, such as meta-sediments, igneous rocks, carbonates, clastics, and volcanics. Tertiary sections are the main targets for the petroleum exploration. In order to determine the optimum processing parameters of the basin, about 12 kinds of test processings were performed. The first main steps for the quality control is to determine the noisy or bad traces by examining the near trace section and shot gathers. The true amplitude recovery was applied to account for the amplitude losses due to spherical divergence and inelastic attenuation. Source designature and predictive deconvolution test were conducted to determine the optimum wavelet parameters and to remove the multiples. Velocity analysis was performed at 1km intervals. The optimum mute function was picked by locating the range of offsets which gives the best stacking response for any particular reflections. Post-stack deconvolution was tested to see if the quality of stacked data improved. The stacked data was migrated using a finite difference algorithm. The migration velocity was obtained from the stacking velocities using the time varying percentages. The AGC sections were provided for the structural interpretation. The RAP sections were used for DHI analysis and for the detection of volcanics.

  • PDF

Experimental Determination of Complex Moduli and Internal Damping of Laminated Composites (적층 복합재료의 내부감쇠와 복소탄성계수 측정에 관한 연구)

  • Lee, Jae-Hyeok;Park, Se-Man;Kim, Hyeong-Sam
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.905-911
    • /
    • 1998
  • Damping is a property for materials and systems to dissipate energy during periodic deformations. Generally, damping causes stiff decrease in amplitudes and shifts in phases. Also, even at resonance, amplitudes are substantially attenuated. This phenomenon of damping helps in reducing stresses developed during vibrations and consequently improves fatigue lives of materials. In this work internal damping and complex moduli are experimentally determined. An impulse technique is utilized in experiments and cantilever beams are selected as test subjects for the measurements of flextural vibrations since the beams lend themselves easily as simplistic ideal models. A resonance method is employed to determine resonance frequencies which are utilized to compute storage moduli. Also, loss moduli are evaluated from damping capacities and storage moduli. The storage and loss moduli combined yield complex moduli. Finally internal damping is evaluated from bandwidth technique, the real component of the transfer function.

  • PDF

Geophysical Investigation of Gas Hydrate-Bearing Sediments in the Sea of Okhotsk (오호츠크해 가스하이드레이트 퇴적층의 지구물리 탐사)

  • Jin, YoungKeun;Chung, KyungHo;Kim, YeaDong
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.207-215
    • /
    • 2004
  • As the sea connecting with the East Sea, the Sea of Okhotsk is the most potential area of gas hydrates in the world. In other to examine geophysical structures of gas hydrate-bearing sediments in the Sea of Okhotsk, the CHAOS (hydro-Carbon Hydrate Accumulation in the Okhotsk) international research expedition was carried out in August 2003. In the expedition, high-resolution seismic and geochemical survey was also conducted. Sparker seismic profiles show only diffusive high-amplitude reflections without BSRs at BSR depth. It means that BSR appears to be completely different images on seismic profiles obtained using different frequencies. Many gas chimneys rise up from BSR depth to seafloor. The chimneys can be divided into two groups with different seismic characteristics; wipe-out (WO) and enhanced reflection (ER) chimneys. Different seismic responses in the chimneys would be caused by amount of gas and gas hydrates filling in the chimneys. In hydroacoustic data, a lot of gas flares rise up several hundreds meters from seafloor to the water column. All flares took placed at the depths within gas hydrate stability zone. It is interpreted that gas hydrate-bearing sediments with low porosity and permeability due to gas hydrate filling in the pore space make good pipe around gas chimneys in which gas is migrating up without loss of amount. Therefore, large-scale gas flare at the site on gas chimney releases into the water column.

  • PDF

Efficient Structure-Oriented Filter-Edge Preserving (SOF-EP) Method using the Corner Response (모서리 반응을 이용한 효과적인 Structure-Oriented Filter-Edge Preserving (SOF-EP) 기법)

  • Kim, Bona;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.176-184
    • /
    • 2017
  • To interpret the seismic image precisely, random noises should be suppressed and the continuity of the image should be enhanced by using the appropriate smoothing techniques. Structure-Oriented Filter-Edge Preserving (SOF-EP) technique is one of the methods, that have been actively researched and used until now, to efficiently smooth seismic data while preserving the continuity of signal. This technique is based on the principle that diffusion occurs from large amplitude to small one. In a continuous structure such as a horizontal layer, diffusion or smoothing is operated along the layer, thereby increasing the continuity of layers and eliminating random noise. In addition, diffusion or smoothing across boundaries at discontinuous structures such as faults can be avoided by employing the continuity decision factor. Accordingly, the precision of the smoothing technique can be improved. However, in the case of the structure-oriented semblance technique, which has been used to calculate the continuity factor, it takes lots of time depending on the size of the filter and data. In this study, we first implemented the SOF-EP method and confirmed its effectiveness by applying it step by step to the field data. Next, we proposed and applied the corner response method which can efficiently calculate the continuity decision factor instead of structure-oriented semblance. As a result, we could confirm that the computation time can be reduced by about 6,000 times or more by applying the corner response method.

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF

Seismic Evidence and Characteristics of Gas Hydrate in the Ulleung Basin (탄성파 자료에서 나타난 울릉분지내 가스수화물의 증거와 특성)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Koo, Nam-Hyeong;Yoo, Dong-G.;Suk, Bong-Chool;Yoo, Hai-Soo;Lee, Ho-Young;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.148-152
    • /
    • 2008
  • Multichannel seismic profiles reveal a strong bottom simulating reflector (BSR) occurring below the seafloor in the plain of the Ulleung Basin, East Sea (Japan Sea). The essential characteristics of the BSR include its cross-cutting relationship to strata, strong amplitude, and reverse polarity with respect to the seafloor reflection, representing the base of the gas hydrate stability zone (BHSZ). The BSR reflection coefficient ranging from -0.23 to -0.26 is 1.5${\sim}$1.7 times that of the seafloor reflection and interval velocities decrease to less than 700 m/s below the BSR. These features indicate the existence of free gas beneath the GHSZ. Heat flow, estimated from the BSR depth as $95{\sim}98mW/m^2$, is in good agreement with measured values. Therefore, the BSR can be efficiently used to estimate regional distribution of heat flow in the Ulleung Basin.

Ground-Roll Suppression of the Land Seismic Data using the Singular Value Decomposition (SVD) (특이값 분해를 이용한 육상 탄성파자료의 그라운드롤 제거)

  • Sa, Jin-Hyeon;Kim, Sung-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.465-473
    • /
    • 2018
  • The application of singular value decomposition (SVD) filtering is examined for attenuation of the ground-roll in land seismic data. Prior to the SVD computation to seek singular values containing the highly correlatable reflection energy, processing steps such as automatic gain control, elevation and refraction statics, NMO correction, and residual statics are performed to enhance the horizontal correlationships and continuities of reflections. Optimal parameters of SVD filtering are effectively chosen with diagnostic display of inverse NMO (INMO) corrected CSP (common shot point) gather. On the field data with dispersion of ground-roll overwhelmed, continuities of reflection events are much improved by SVD filtering than f-k filtering by eliminating the ground-roll with preserving the low-frequency reflections. This is well explained in the average amplitude spectra of the f-k and SVD filtered data. The reflectors including horizontal layer of the reservoir are much clearer on the stack section, with laminated events by SVD filtering and subsequent processing steps of spiking deconvolution and time-variant spectral whitening.

Vibratory Loads Reduction of a Rotor in Slow Descent using Higher Harmonic Control Technology (고조파제어(HHC) 기법을 이용한 저속 하강 비행중인 로터의 진동하중 억제에 관한 연구)

  • You, Younghyun;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.440-447
    • /
    • 2013
  • In this paper, a higher harmonic control (HHC) methodology is applied to find the optimum input scenario for the vibratory hub loads reduction. A comprehensive aeroelastic analysis code, CAMRAD II, is used to model the HART (Higher-harmonic-control Aeroacoustic Rotor Test) II rotor, and parametric study is conducted for the best HHC inputs leading to a minimum vibration (MV) condition. The resulting outcomes are compared with the earlier HART II test results. It is indicated that the control input adopted in the MV condition showed less satisfactory results. The new MV condition obtained in the present investigation can achieve 45% lower vibration level than the baseline uncontrolled condition. The optimum HHC input results lead to 3/rev harmonic input having $0.8^{\circ}$ amplitude and $350^{\circ}$ phase angle. About 5% reduction in the required power is possible but accompanies with the increase of vibration level.