• Title/Summary/Keyword: 탄성파 음원

Search Result 46, Processing Time 0.023 seconds

Prestack migration using seismic interferometry (탄성파 간섭파를 이용한 중합전 구조보정)

  • Kim, Young-Wan;Jang, Seong-Hyung;Yoon, Wang-Jung;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.203-207
    • /
    • 2008
  • Prestack depth migration is used to image for complex geological structure such as faults, folds, and subsalt. In this case, it is widely used the surface reflection data as a input data. However, the surface reflection data have intrinsic problems to image the subsalt and the salt flank due to the complex wavefields and multiples which come from overburden. For overcoming the structural defect of the surface reflection data in the imaging, I used the virtual sources in terms of seismic interferometry to image the subsurface and suppress the multiples using the velocity model of the lower part of the virtual sources. The results of the prestack depth migration using virtual source gathers and velocity model below receivers are similar geological interfaces to the results from shot gathers of the conventional ocean bottom seismic survey. And especially artificial interfaces by multiples were suppressed without applying any other data processing to eliminate multiples. This study results by numerical modeling can make a valuable imaging tool when it is applied to satisfied field data for specific condition.

  • PDF

Seismic Properties Study of Gas Hydrate in Deep Sea using Numerical Modeling Technique (수치 모델링 기술을 이용한 심해 가스 하이드레이트의 탄성파 특성 연구)

  • Shin, Sung-Ryul;Yeo, Eun-Min;Kim, Chan-Su;Park, Keun-Pil;Lee, Ho-Young;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.139-147
    • /
    • 2006
  • We had conducted a numerical modeling to investigate seismic properties of gas hydrate with field parameters acquired over the East sea in 1998. We used a 2-D staggered grid finite difference method to generate synthetic elastic seismograms for multi-channel seismic survey, OBC (Ocean Bottom Cable) survey and VCS (Vertical Cable Seismic) survey. The results of this study showed that the method using staggered grid yielded stable results and could be used to seismic imaging. We could find out the high amplitude anomaly and the phase reversal phenomenon of reflection wave at interface between the gas hydrate layer and free gas layer such a BSR (Bottom Simulating Reflector) which is the evidence for existence of gas hydrate in seismic reflection data. And we computed the reflection coefficients at the incident angles corresponding to offset distance with the synthetic seismograms. The reflection coefficients acquired from the numerical modeling were nearly consistent with the reflection coefficient computed by Shuey's equation.

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

A High-resolution Seismic Survey on the Abandoned Tidal Flat in Shihwa Lake (시화호내 과거 조간대에서의 고해상 탄성파 탐사)

  • Hong, Jong Guk;Kim, Gi Yeong;Choe, Dong Rim
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.4
    • /
    • pp.251-258
    • /
    • 1999
  • A high-resolution seismic survey was conducted on the abandoned tidal flat in Shihwa Lake on the west coast of Korea. A portable vibrator was used as a seismic source and 217 shot gathers with 48-channel system were acquired. F-k filtering, residual static corrections and post-stack frequency filtering are found to be useful for signal enhancement. The overburden is divided into two seismic depositional units. Unit I is deposited in tidal environment characterized by parallel and high continuity reflection pattern. This unit comprises a dry layer (Unit Ia) and a wet layer (Unit Ib) having averagely 5 and 15 meters thick, respectively. Unit II unconformably overlain by Unit I exhibits discontinuity and hummocky reflection pattern, indicating complex channel-fill sediments in estuary. The maximum thickness of this unit is approximately 20 meter. Acoustic basement is considered as Precambrian granitic gneiss occurred in the surrounding area.

  • PDF

Construction the pseudo-Hessian matrix in Gauss-Newton Method and Seismic Waveform Inversion (Gauss-Newton 방법에서의 유사 Hessian 행렬의 구축과 이를 이용한 파형역산)

  • Ha, Tae-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.191-196
    • /
    • 2004
  • Seismic waveform inversion can be solved by using the classical Gauss-Newton method, which needs to construct the huge Hessian by the directly computed Jacobian. The property of Hessian mainly depends upon a source and receiver aperture, a velocity model, an illumination Bone and a frequency content of source wavelet. In this paper, we try to invert the Marmousi seismic data by controlling the huge Hessian appearing in the Gauss-Newton method. Wemake the two kinds of he approximate Hessian. One is the banded Hessian and the other is the approximate Hessian with automatic gain function. One is that the 1st updated velocity model from the banded Hessian is nearly the same of the result from the full approximate Hessian. The other is that the stability using the automatic gain function is more improved than that without automatic gain control.

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.

Prestack Depth Migration for Gas Hydrate Seismic Data of the East Sea (동해 가스 하이드레이트 탄성파자료의 중합전 심도 구조보정)

  • Jang, Seong-Hyung;Suh, Sang-Yong;Go, Gin-Seok
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.711-717
    • /
    • 2006
  • In order to study gas hydrate, potential future energy resources, Korea Institute of Geoscience and Mineral Resources has conducted seismic reflection survey in the East Sea since 1997. one of evidence for presence of gas hydrate in seismic reflection data is a bottom simulating reflector (BSR). The BSR occurs at the interface between overlaying higher velocity, hydrate-bearing sediment and underlying lower velocity, free gas-bearing sediment. That is often characterized by large reflection coefficient and reflection polarity reverse to that of seafloor reflection. In order to apply depth migration to seismic reflection data. we need high performance computers and a parallelizing technique because of huge data volume and computation. Phase shift plus interpolation (PSPI) is a useful method for migration due to less computing time and computational efficiency. PSPI is intrinsically parallelizing characteristic in the frequency domain. We conducted conventional data processing for the gas hydrate data of the Ease Sea and then applied prestack depth migration using message-passing-interface PSPI (MPI_PSPI) that was parallelized by MPI local-area-multi-computer (MPI_LAM). Velocity model was made using the stack velocities after we had picked horizons on the stack image with in-house processing tool, Geobit. We could find the BSRs on the migrated stack section were about at SP 3555-4162 and two way travel time around 2,950 ms in time domain. In depth domain such BSRs appear at 6-17 km distance and 2.1 km depth from the seafloor. Since energy concentrated subsurface was well imaged we have to choose acquisition parameters suited for transmitting seismic energy to target area.

Seismic Data Processing For Gas Hydrate using Geobit (Geobit을 이용한 가스 하이드레이트 탐사자료 처리)

  • Jang Seong-Hyung;Suh Sang-Yong;Chung Bu-Heung;Ryu Byung-Jae
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.184-190
    • /
    • 1999
  • A study of gas hydrate is a worldwide popular interesting subject as a potential energy source. A seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. General indicators of natural submarine gas hydrates in seismic data is commonly inferred from the BSR (Bottom Simulating Reflection) that occurred parallel to the see floor, amplitude decrease at the top of the BSR, amplitude Blanking at the bottom of the BSR, decrease of the interval velocity, and the reflection phase reversal at the BSR. So the seismic data processing for detecting gas hydrates indicators is required the true amplitude recovery processing, a accurate velocity analysis and the AVO (Amplitude Variation with Offset) analysis. In this paper, we had processed the field data to detect the gas hydrate indicators, which had been acquired over the East sea in 1998. Applied processing modules are spherical divergence, band pass filtering, CDP sorting and accurate velocity analysis. The AVO analysis was excluded, since this field data had too short offset to apply the AVO analysis. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). This is the method which calculate the velocity spectrum by iterative and interactive. With XVA, we could determine accurate stacking velocity. Geobit 2.9.5 developed by the KIGAM was used for processing data. Processing results say that the BSR occurred parallel to the sea floor were shown at $367\~477m$ depths (two way travel time about 1800 ms) from the sea floor through shot point 1650-1900, the interval velocity decrease around BSR and the reflection phase reversal corresponding to the reflection at the sea floor.

  • PDF

Seismic Imaging of a Tidal Flat: A Case Study for the Mineopo Area (조간대(갯벌)에서의 탄성파 탐사: 민어포 지역의 사례)

  • Jou, Hyeong-Tae;Kim, Han-Joon;Lee, Gwang-Hoon;Lee, Sang-Hoon;Jung, Baek-Hoon;Cho, Hyun-Moo;Jang, Nam-Do
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.197-203
    • /
    • 2008
  • A shallow high-resolution seismic reflection survey was carried out at the Mineopo tidal flat on the western coast of Korea. The purpose of the survey was to investigate shallow sedimentary structure of the tidal flat associated with the recent sea level change. A total of 795 shots were generated at 1 m interval from a 5-kg hammer source and recorded on 48 channels of 100 Hz geophones along two mutually perpendicular profiles. The water-saturated ground condition resulted in suppressed ground rolls by significantly decreasing rigidity. In addition, seismic velocities over 1500 m/s provided easy segregation of reflected arrivals from lower velocity noise. As a consequence, seismic sections from the study area show significantly higher resolution and signal to noise ratio than conventional land seismic sections. The tidal flat consists of 5 sedimentary sequences above acoustic basement. The seismic sections reveal the continuous structure of the tidal flat formed in association with sea level rise during the Holocene.

Seismic reflection survey in a tidal flat: A case study for the Mineopo area (갯벌 지역에서의 탄성파 탐사: 민어포 조간대 지역의 사례)

  • Jou Hyeong-Tae;Kim Han-Joon;Lee Gwang-Hoon;Choi Dong-Lim;Kim Min-Ji;Cho Hyun-Moo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.67-84
    • /
    • 2002
  • A shallow high-resolution seismic reflection survey was carried out at the Mineopo tidal flat on the western coast of Korea. The purpose of the survey was to investigate shallow sedimentary structure of the tidal (fat associated with the recent sea level change. A total of 795 shots were generated at 1 m interval from a 5-kg hammer source and recorded on 48 channels of 100 Hz geophones along two mutually perpendicular profiles. The water-saturated ground condition resulted in suppressed ground rolls by significantly decreasing rigidity. In addition, seismic velocities over 1500 m/s provided easy segregation of reflected arrivals from lower velocity noise. As a consequence, seismic sections were created that are high in resolution and signal to noise ratio as well. The stack sections show that the tidal flat consists of 5 sedimentary sequences above acoustic basement. Although deposition is largely characterized by the transgressive sedimentary facies resulting from sea level rise, erosional surfaces are well-resolved within the sequences.

  • PDF