• Title/Summary/Keyword: 탄성파 에너지

Search Result 153, Processing Time 0.026 seconds

Acoustic impedance for gas hydrate by Geobit (지오빗에 의한 가스 하이드레이트 탄성파 자료 음향임피던스)

  • Jang, Seong-Hyung;Kim, Young-Wan;Doan, Huy-Hien;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.560-563
    • /
    • 2007
  • 속도와 밀도의 함수로 이루어진 음향 임피던스는 탄성파자로부터 물성변화를 확인하는 방법 중의 하나로 이용된다. 본 연구에서는 한국지질자원연구원에서 개발된 탄성파 탐사자료처리 무른모 지오빗올 이용하여 기본 자료처리를 실시하고, 음향 임피던스 변환 모듈올 적용하여 동해 가스 하이드레이트 현장자료에 대한 광역 임피던스변화를 구하고 이로부터 음향 임피던스 단면도를 구하고자였다. 음향 임피던스 단면도는 중합단면도상에서 음향 임피던스 변화를 보여주고 있으며 특히 왕복주시 2.9초 전후에서 해저면 반사파와 위상이 반대이며 고진폭을 나타내는 해저면 기인 고진폭 반사층으로 여길만한 지점에서 그 변화가 크게 나타남을 알 수 있었다. 탄생파자료는 10 Hz 이하 저주파 정보가 들어있지 않아 완전한 음향 임피던스를 구할 수 없으므로 층서해석이 이루어진 중합 단면도부터 광역 임피던스를 구하였다. 향후 시추자료를 활용할 경우 좀더 정확한 음향 임피던스 단면도를 생산할 수 있을 것으로 여겨진다.

  • PDF

Seismic Data Processing for a BSR related to a Gas Hydrate of the East Sea (BSR 확인을 위한 동해 가스 하이드레이트 탐사자료 처리)

  • Jang, Seong-Hyung;Ryu, Byong-Jae;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.626-629
    • /
    • 2005
  • 새로운 에너지 자원으로 활용 가능성을 포함하고 있는 가스 하이드레이트를 조사하기 위해 한국지질자원연구원에서는 동해일원에서 탄성파탐사를 실시하고 있다. 탄성파 반사자료로부터 가스 하이드레이트 부존여부를 확인하는 방법은 해저면과 평행하면서 위상이 반대로 나타나는 고진폭 반사파 BSR (Bottom Simulating Reflect ion)과 BSR 상부에서의 진폭감소, 하부에서 진폭증가와 구간속도 감소 등을 들 수 있다. 그러나 고진폭 반사파는 free gas 또는 실리카를 포함하는 퇴적층에서도 발생하므로 이를 구별할 수 있는 방법이 필요하다. 여기에서는 가스 하이드레이트 탐사자료에 대한 일반자료처리와 함께 가스층 존재 유무를 확인하는 방법으로 많이 이용되는 탄성파 복소분석법을 적응하였다. 가스 하이드레이트 부존 유망지역에 대해 순간진폭, 순간진폭에 대한 1차, 2차 미분, 순간위상, 순간주파수 단면도를 제작하여 중합단면도와 비교하였으며 그 결과 순간진폭단면도의 경우 강한 BSR이 나타나는 지층경계면에서 순간진폭변화 차이를 강하게 보였으며, 순간주파수 단면도의 경우 BSR지역에서 고주파에서 저주파수로 변화함을 확인할 수 있었다.

  • PDF

Shallow Gas Exploration in the Pohang Basin Transition Zone (포항분지 전이대에서 천부가스 탐사)

  • Lee, Donghoon;Kim, Byoung-Yeop;Kim, Ji-Soo;Jang, Seonghyung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • For surveying shallow gas reservoirs in the Pohang basin, we proposed a seismic exploration method applicable to the transition zone in which land and marine areas are connected. We designed the seismic acquisition geometry considering both environments. We installed land nodal receivers on the ground and employed vibroseis and airgun sources in both land and marine areas. For seismic exploration in the transition zone, specific acquisition and processing techniques are required to ensure precise matching of reflectors at the boundary between the onshore and offshore regions. To enhance the continuity of reflection events on the seismic section, we performed amplitude and phase corrections with respect to the source types and applied a static correction. Following these processing steps, we obtained a seismic section showing connected reflectors around the boundary in the transition zone. We anticipate that our proposed seismic exploration method can also be used for fault detection in the transition zone.

Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis (탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구)

  • Jongpil Won;Jungkyun Shin;Jiho Ha;Hyunggu Jun
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.51-71
    • /
    • 2024
  • Seismic exploration is one of the widely used geophysical exploration methods with various applications such as resource development, geotechnical investigation, and subsurface monitoring. It is essential for interpreting the geological characteristics of subsurface by providing accurate images of stratum structures. Typically, geological features are interpreted by visually analyzing seismic sections. However, recently, quantitative analysis of seismic data has been extensively researched to accurately extract and interpret target geological features. Seismic attribute analysis can provide quantitative information for geological interpretation based on seismic data. Therefore, it is widely used in various fields, including the analysis of oil and gas reservoirs, investigation of fault and fracture, and assessment of shallow gas distributions. However, seismic attribute analysis is sensitive to noise within the seismic data, thus additional noise attenuation is required to enhance the accuracy of the seismic attribute analysis. In this study, four kinds of seismic noise attenuation methods are applied and compared to mitigate random noise of poststack seismic data and enhance the attribute analysis results. FX deconvolution, DSMF, Noise2Noise, and DnCNN are applied to the Youngil Bay high-resolution seismic data to remove seismic random noise. Energy, sweetness, and similarity attributes are calculated from noise-removed seismic data. Subsequently, the characteristics of each noise attenuation method, noise removal results, and seismic attribute analysis results are qualitatively and quantitatively analyzed. Based on the advantages and disadvantages of each noise attenuation method and the characteristics of each seismic attribute analysis, we propose a suitable noise attenuation method to improve the result of seismic attribute analysis.

Application of 3D Printing Technology in Seismic Physical Modeling (탄성파 축소모형 실험에서의 3D 프린팅 기술 활용)

  • Kim, Daechul;Shin, Sungryul;Chung, Wookeen;Shin, Changsoo;Lim, Kyoungmin
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.56 no.3
    • /
    • pp.260-269
    • /
    • 2019
  • The application of 3D printing technology in seismic physical modeling was investigated and the related domestic research was conducted. First, seven types of additive manufacturing methods were evaluated. In this report, to confirm the application of 3D printing technology, related studies in domestic and international journals of geophysics were searched and a comprehensive analysis was conducted according to year and the additive manufacturing type. The analysis showed that studies on 3D printing technology have been dominantly conducted since the 2010s, which corresponds to the time when 3D printers were commercialized. Moreover, 87% of the studies used the material extrusion additive manufacturing method, and the research was conducted in specific universities. This research can be used as basic data for application of 3D printing technology in geophysics.

A study on monitoring the inner structure of dam body using high resolution seismic reflection method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim Jungyul;Kim Hyoungsoo;Oh Seokhoon;Kim Yoosung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.15-20
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes, After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture, Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

A study on Monitoring the Inner Structure of Dam Body Using High Resolution Seismic Reflection Method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim, Jung-Yul;Kim, Hyoung-Soo;Oh, Seok-Hoon;Kim, Yoo-Sung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes. After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture. Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

Application and Improvement of Complex Frequency Shifted Perfectly Matched Layers for Elastic Wave Modeling in the Frequency-domain (주파수영역 탄성파모델링에 대한 CFS-PML경계조건의 적용 및 개선)

  • Son, Min-Kyung;Cho, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.121-128
    • /
    • 2012
  • Absorbing boundary conditions are used to mitigate undesired reflections that can arise at the model's truncation boundaries. We apply a complex frequency shifted perfectly matched layer (CFS-PML) to elastic wave modeling in the frequency domain. Modeling results show that the performance of our implementation is superior to other absorbing boundaries. We consider the coefficients of CFS-PML to be optimal when the kinetic energy becomes to the minimum, and propose the modified CFS-PML that has the CFS-PML coefficient ${\alpha}_{max}$ defined as a function of frequency. Results with CFS-PML and modified CFS-PML are significantly improved compared with those of the classical PML technique suffering from large spurious reflections at grazing incidence.

Amplitude Characteristics Analysis of Crosswell Seismic Tomography Data in Underground Cavity (지하공동지역에서 시추공간 탄성파 토모그래피 탐사자료의 진폭특성 분석 : 사례연구)

  • 서기황;유영철;유영준;송무영
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.129-137
    • /
    • 2003
  • We interpreted the seismic signal characteristics from crosswell seismic tomography in the underground cavity like abandoned mines. The first arrival time delay and amplitude attenuation showed clearly at the low velocity zone of cavity and fracture. Also ray density decreased by detour of raypath. As a result of the amplitude spectrum analysis of fresh rock and low velocity zone, there were no noticeable differences of the amplitude up to about 1000Hz frequency, but indicated that the one passed around cavity decreased about 7dB at 2000Hz, and 20dB at 3000Hz. It was possible to compare the signal characteristics between two media by extracting the signal data from the fresh rock zone and the underground cavity through the seismic crosswell tomography.

2 Dimensional FEM Elastic Wave Modeling Considering Surface Topography (불규칙 지형을 고려한 2차원 유한요소 탄성파 모델링)

  • Lee, Jong-Ha;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.2
    • /
    • pp.34-44
    • /
    • 2001
  • Forward modeling by construction of synthetic data is usually practiced in a horizontal surface and a few subsurface structures. However, in-situ surveys often take place in such topographic changes that the corrupted field data always make it difficult to interpret the right signals. To examine the propagation characteristic of elastic waves on the irregular surface, a general mesh generation code for finite element method was modified to consider the topography. By implementing this algorithm, the time domain modeling was practiced in some models with surface topography such as mound, channel, etc. The synthetic data obtained by receivers placed on surface also agreed with the analytic solution. The snapshots showing the total wave-field revealed the propagation characteristic of the elastic waves through complex subsurface structures and helped to identify the signals on the time traces. The transmission of Rayleigh waves along the surface, compressive waves, and sheer waves was observed. Moreover, it turned out that the Rayleigh waves behave like a new source at the edge.

  • PDF