• Title/Summary/Keyword: 탄성전자

Search Result 326, Processing Time 0.022 seconds

Histological Examination of Tissue Isolated from Fascia with a View of Meridian System (경락의 관점에서 본 근막 분리조직의 조직학적 연구)

  • Kim, Dong-Heui;Deung, Young-Kun;Chang, Byung-Soo;Jung, Han-Suk;Jin, Dan;Kwon, Ki-Rok;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.36 no.3
    • /
    • pp.183-194
    • /
    • 2006
  • The threadlike structures of fascia were examined by tight and electron microscopy. In order to distinguish its tissue organization, we used staining methods including hematoxylin-eosin, Masson's trichrome, Van Gieson's collagen fiber stain and Kluver-Barrera's luxol fast blue for nerve stain. Under the light microscope, the threadlike structures were composed of many collagen fibers and nerve. In higher magnification, they looked like as the bundle of tubular structures. Many myoid cell-spindle nuclei were observed in the tissue, which were taken from the fascia. It was identical with Bonghan duct known as one of meridian network theory. In the early 1960's the North Korean Bong-Han Kim showed the anatomical structures of the acupuncture points, and explained the meridian system as the concrete duct network system. According to Bonghan theory the Bonghan ducts spread throughout the body Because it is believed that the duct could have the role of signal pathway, the theory was reinvestigated in these days. All of the threadlike structures isolated from fascia shows the abundance of collagen fibers. The electron microscope examination (TEM) could confirm the well arranged collagen fiber and nerve. This investigation reveals that superficial Bohghan duct are nerve fiber parallel running with collagen fibers. We conjectured that the intermingled structure of collagen fiber, blood vessel and nerve fiber might have the role of meridian system. And the more, regardless of histological research, the study on collagen fiber as response transmitter in acupuncture treatment are in need.

Studies on the Thermal and Rheological Properties of Polypropylene/Starch-MB Blends (폴리프로필렌/옥수수전분 블렌드의 열적 유변학적특성 연구)

  • Kim, Youn Cheol;Lee, Chang-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.557-561
    • /
    • 2007
  • Polypropylene (PP)/corn starch master batch (starch-MB) blends with different PP compositions of 40, 50, 60, and 80 wt% were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The chemical structures and thermal properties of the PP/starch-MB blends were investigated by FT-IR, differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). The chemical structure was confirmed by the existence of hydroxy group. There was no district change in melting temperature and melting enthalpy, and TGA curve indicated a decrease in degradation temperature with starch-MB content. The porosity change of blend was measured by scanning electron microscope (SEM), the degree of porosity on the blend surface increased with the starch-MB content. The rheological properties indicated an increase in complex viscosity, shear thinning tendency and elasticity with the starch-MB concentration. These effects were confirmed by an oscillatory viscometer at $200^{\circ}C$. From these results, it is found that 40 wt% is the optimum starch-MB concentration. The fiber was fabricated from PP60/MB40 with 40 wt% starch-MB and the porosity and tensile properties were investigated.

New Magnetic Phases of Fe-N and Mn-Al Alloys Produced by Mechanochemical Milling (기계적 밀링 및 화학적 추출법에 의해 제조한 Fe-N 및 Mn-Al계의 새로운 자성재료)

  • Kyu-Jin Kim;Tae-Hwan Noh;Kenji Suzuki
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.347-354
    • /
    • 1994
  • The structural change and magnetic properties of mechanically milled Fe-N and Mn-Al alloy powders have been investigated by XRD, TEM, VSM, $M\"{o}ssbauer$ spectroscopy and inelastic neutron scattering measurements. During milling of ${\gamma}'-Fe_{4}N$ powders, and fcc ${\gamma}'-Fe_{4}N$ phase is transformed to a bct ${\alpha}'-Fe(N)$ phase by stress-induced martensitic transformation, being accompanied by an initial increase in saturation magnetization. During annealing the bct ${\alpha}'-Fe(N)$ nanocrystalline phase which is obtained by mechanical grinding for a long time, an ${\alpha}'-Fe_{16}N_{2}$ phase partially appears as an intermediate phase at 673~773 K, causing an increase in saturation magnetization. During milling of Mn-45, 70 and 85 at.% Al mixed powders, Al atoms are partially solubilized into an ${\alpha}-Mn$ phase. The Al supersaturated ${\alpha}-Mn-type$ phases change from paramagnetic to ferromagnetic : the saturation magnetization is 11 emu/g for the as-milled Mn-70 at.% Al powders. Moreover, by removing almost all Al atoms from the as-milled Mn-85 at.% Al powders using chemical leaching, the saturation magnetization increases up to 36 emu/g. The above bct ${\alpha}'-Fe(N)$ and ferromagnetic ${\alpha}-Mn$ type alloys are the magnetic materials found for the first time, by using the present mechanochemical process.

  • PDF

Effect of the Starch Content on the Silicate Dispersion and Rheological Properties of Polypropylene/Starch/Silicate Composites (폴리프로필렌/전분/실리케이트 복합체의 실리케이트 분산 및 유변학적특성에 미치는 전분 함량의 영향)

  • Kim, Youn Cheol;Lee, Chang-Young
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.106-111
    • /
    • 2008
  • Polypropylene (PP)/corn starch master batch (starch-MB)/silicate composites with different corn starch compositions of 10, 20, 30, 40 and 50 were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The content of silicate was fixed at 5 wt%. The composition of starch-MB in composites was confirmed by the existence of hydroxy group and peak intensity in fourier-transform-infrared (FT-IR) spectrum. The thermal properties of the PP/starch-MB/silicate composites were investigated by differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). There was no district change in melting temperature, and TGA curve indicates a decrease in degradation temperature with the increase of starch-MB content. The silicate dispersion of the composites was measured by X-ray diffraction (XRD) and transmission electron microscope (TEM). The degree of silicate dispersion in PP/starch-MB/silicate composites depended on the content of starch-MB. There was detectable change in d-spacing and peak intensity of the composite when the content of starch-MB was higher than 20 wt%. The rheological behavior of the composites was explained by both shear thinning effect and elastic property with the starch-MB amount. These effects were remarkable when the content of starch-MB was higher than 20 wt%. These were confirmed by an oscillatory viscometer at $200^{\circ}C$.

Polyether Ester by Rubber Content and Rubber According to the Type of Dynamic Vulcanized Properties (TPEE) (폴리에스터계 동적가교물의 고무함량 및 고무종류에 따른 물성)

  • Yun, Ju-Ho;Yun, Jung-Hwan;Ha, Seong-Mun;Kim, Il;Sim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • E-TPE (Engineering Thermoplastic Polyether Ester) was Ester Elastomer with functional groups as recycling and fast processability. In addition, if the car's lightweight enough to highlight eco-friendly materials that help to improve fuel economy has become. Have all the attributes of the rubber and engineering plastics E-TPE the available temperature area is spacious, heat resistance and oil resistance is excellent but getting attention as a new material in the field of auto parts in the field of electrical and electronic domestic depends entirely on imports by the lack of core technology and has been research and development is urgently needed. In this study, the hard segments, polyester (TPEE) as the base soft elastomers of the segments Ethylen-prophylene-Copolymer and CSM (Choloro sulphonated polyethylene Rubber), VAMAC (Ethylene Acrylic Rubber), NBR (Acrylonitrin Butadiene Rubber), 1, 3-Phenylene-bisoxazoline is dealing with Dynamic Vulcanized by content and added rubber properties, thermal variation observed. As a result, the properties of the dynamic vulcanization with NBR compared to other rubber heat resistance and oil resistance is on the increase.

Rheological Properties and Foaming Behaviors of Modified PP/Nano-filler Composites (개질 폴리프로필렌/나노필러 복합체의 유변학적 특성 및 발포거동)

  • Yoon, Kyung Hwa;Lee, Jong Won;Kim, Youn Cheol
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.494-499
    • /
    • 2013
  • Modified polypropylene (m-PP) was fabricated by furfuryl sulphide (FS) as branching agent and m-PP/nano-filler composites were prepared with silicate and multi-walled carbon nanotube (MWCNT), using a twin screw extruder. The chemical structures and thermal properties of the m-PP were investigated by FTIR and DSC. The chemical structure of the m-PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no district change in melting temperature in case of m-PP, but a certain increase in crystallization temperature was notified and the increase was in the range of $10-20^{\circ}C$. The rheological properties, filler dispersion and foaming behaviors of the m-PP/nano-filler composites were investigated by dynamic rheometer, X-ray diffractometer (XRD) and scanning/transmission electron microscope (SEM/TEM). m-PP/nano-filler composites showed a high complex viscosity at a low frequency, an increase in melt elasticity, and a high shear thinning effect. Compared to pure PP, m-PP and m-PP/nano-filler composites were sufficient to enhance the foaming behavior.

Paticle Size Distribution, Pasting Pattern and Texture of Gel of Acorn, Mungbean, and Buckwheat Starches (도토리, 녹두 및 메밀전분의 입도분포, 호화패턴과 겔특성)

  • Cho, Sung-Ae;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1291-1297
    • /
    • 2000
  • Particle size distribution, pasting properties by Rapid Visco Analyser, and textural properties of acorn, mungbean and buckwheat starches, which are the basic raw materials for mook, are compared. The major particle size of mungbean starch was $10{\sim}30$ micron, whereas acorn and buckwheat starches were $5{\sim}20$ micron. At the same starch concentration, mungbean starch had the highest peak viscosity, breakdown and setback. Acorn starch showed the lowest peak viscosity and breakdown. The peak viscosity of buckwheat starch was close to that of mungbean, however the trough and final viscosity were comparable to those of acorn starch. At the same peak viscosity, mungbean starch showed the lowest trough and final viscosity and the highest breakdown and setback. Acorn starch was differentiated from buckwheat starch in that the former had the higher value of setback. The textural properties of mungbean starch gel were significantly different from others. The texture of gels from acorn and buckwheat starches revealed that only the hardness and gumminess were different each other. The hardness of starch gels were negatively correlated with trough and final viscosity, and positively correlated with setback.

  • PDF

On characteristics of environmental correction factors in the South Indian Ocean by Topex/Poseidon satellite altimetric data (Topex/Poseidon 위성의 Altimeter자료를 이용한 남인도양의 환경보정인자 특성에 관한 연구)

  • 윤홍주;김영섭;이재철
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.117-128
    • /
    • 1998
  • Topex/Poseidon satellite, launched in Auguest 1992, has provided more 5 years of very good quality data. Efficient improvements, either about instrumental accuracy or about sea level data correction, have been made so that Topex/Poseidon has become presently a wonderful tool for many researchers. The first mission data of 73 cycles, September 1992 - August 1994, was used to our study in order to know characteristics of environmental correction factors in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean. According to standard procedures as defined under user handbook for sea surface height data processes, then we have chosen cycles 43 as the cycle of reference because this cycle has provided the completed data for measurement points and has presented the exacted position of ground track compared to another cycles. It was computed variations of various factors for correction in ascending ground track 103(Amsterdam-Kerguelen continental plateau) and descending ground track170 (Crozet basin). Here the variations of ionosphere, dry troposphere, humid troposphere, electromagnetic bias, elastic tide and loading tide were generally very smaller as a few of cm, but the variations of oceanic tide(30-35cm) and inverted barometer(15-30cm) were higher than another factors. For the correction of ocean tide, our model(CEFMO: Code d' Elements Finis pour la Maree Oceanique) - This is hydrodynamic model that is very well applicated in all oceanic situations - was used because this model has especially good solution in the coastal and island area as the open sea area. Conclusionally, it should be understood that the variation of ocean free surface is mainly under the influence of tides(>80-90%) in the Amsterdam - Crozet- Kerguelen region of the South Indian Ocean.

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (Carbon Nano Tube 및 산화그래핀을 첨가한 폴리우레아 복합재 제조 및 그 화학적 특성 분석)

  • Kim, Hyeongtae;Lee, Jihyun;An, Woo-Jin;Park, Jun Hong
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • Polyurea has been investigated as a polymer matrix for composite materials because of its high mechanical strength. Although polyurea has a similar chemical structure to polyurethane, it has much higher strength and durability. In this study, the fabrication of polyurea composites reinforced with carbon nanotube (CNT) and graphene oxide (GO) is demonstrated to enhance the tensile strength of the glass fibers composite. Using FTIR and Raman spectroscopies, the chemical structures of polyurea, CNT, and GO are investigated. As a result, spectroscopy analysis reveals that the chemical structure of CNT, GO, and polyurea is maintained during the fabrication of the composite structure. Scanning electron microscopy reveals the uniform distribution of CNT and GO across the polyurea matrix. The reinforcement of 1 wt% CNT in polyurea enhances the tensile strength of CNT/polyurea composites. In contrast, the reinforcement of GO in polyurea induces the degradation of the tensile strength of GO/polyurea composites.

Development and Application of Cellulose Nanofiber Powder as a Nucleating Agent in Polylactic Acid (나노셀룰로오스 분말 개발과 폴리젖산 내 핵제 적용 연구)

  • Sanghyeon Ju;Ajeong Lee;Youngeun Shin;Teahoon Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2023
  • Because of the global pollution caused by plastic disposal, demand for eco-friendly transformation in the packaging industry is increased. As part of that, the utilization of polylactic acid (PLA) as a food packaging material is increased. However, it is necessary to improve the crystallinity of PLA by adding nucleating agents or to improve the modulus by adding fillers because of the excessive brittleness of the PLA matrix. Thus, the cellulose nanofiber (CNF) was fabricated and dried to obtain a powder form and applied to the CNF/PLA nanocomposite. The effect of CNF on the morphological, thermal, rheological, and dynamic mechanical properties of the composite was analyzed. We can confirm the impregnated CNF particle in the PLA matrix through the field emission scanning electron microscope (FE-SEM). Differential scanning calorimetry (DSC) analysis showed that the crystallinity of not annealed CNF/PLA nanocomposite was increased approximately 2 and 4 times in the 1st and 2nd cycle, respectively, with the shift to lower temperature of cold crystallization temperature (Tcc) in the 2nd cycle. Moreover, the crystallinity of annealed CNF/PLA nanocomposite increased by 13.4%, and shifted Tcc was confirmed.