• Title/Summary/Keyword: 탄성응력장

Search Result 111, Processing Time 0.024 seconds

Stability Analysis of Unsymmetric Tapered Thin-walled Beams (비대칭 선형 변단면을 갖는 박벽 공간 보의 안정성 해석)

  • 김성보;구봉근;한상훈;정경섭
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.197-207
    • /
    • 1998
  • 전단변형 효과를 무시하는 경우에 비대칭 선형 변단면을 갖는 박벽 공간 보의 안정성 해석을 위한 일반이론을 유도한다. 비대칭 선형 변단면의 임의점을 통과하는 부재축과 단면의 주축의 방향과 무관하고 부재축과 직각을 이루는 두 개의 좌표축을 도입하여 직각좌표계를 정의한다. 정의된 좌표축을 기준으로 유한한 회전각의 2차항을 고려하는 변위장을 도입하여 연속체에 대한 가상일의 원리로부터 탄성변형에너지, 그리고 초기응력에 의한 포텐셜에너지를 유도한다. 이를 이용하여 비대칭 선형 변단면을 갖는 박벽 공간 보의 안정성해석을 위한 평형방정식을 제시한다. 3차 Hermitian 다항식을 변위파라미터의 형상함수로 사용하여 박벽 공간 보의 탄성강도 및 기하강도행렬을 상정할 뿐만 아니라, 단면의 좌표축에 상관없이 임의의 위치에 작용하는 하중에 대한 하중보정강도행렬(load-correction stiffness matrix)을 제시한다. 본 이론 및 방법의 타당성을 검증하기 위하여 수치해석을 수행하고 문헌의 결과 및 쉘요소를 사용한 해석결과와 비교하여 본 이론의 정당성을 입증한다.

  • PDF

p-Version Finite Element Analysis of Elasto-Plastic Cracked Plates Including Strain Hardening Effects (변형률 경화효과를 고려한 탄소성 균열판의 p-Version 유한요소해석)

  • 우광성;홍종현;윤영필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.537-549
    • /
    • 1999
  • 선형탄성 파괴해석은 균열을 갖는 변형률 경화재료의 파괴거동을 예측하는데 불충분하기 때문에 최근에는 균열 선단 부에서 대규모 소성 역을 갖는 균열 체에 적용할 수 있는 많은 파괴역학개념이 제안되고 있다. 따라서, 본 연구에서는 대규모항복 조건하의 연성파괴를 보이는 평판을 정확하게 해석할 수 있는 새로운 유한요소모델을 제시하고자 한다. 균열 선단 부의 응력 장을 정의하는데 가장 지배적인 파괴매개변수인 J-적분 값과 소성 역의 크기 및 형상을 J-적분법과 등가영역적분법을 통해 파괴거동을 설명할 수 있도록 증분소성이론에 기초를 둔 p-version 유한요소해석이 채택되었다. 제안된 유한요소모델에 의한 수치해석결과는 이론 해와 h-version 유한요소해석과 비교되었다.

  • PDF

Effect of Interface Hole Shape on Dynamic Interface Crack Propagation (계면에 존재하는 구멍의 모양이 동적 계면균열전파에 미치는 영향)

  • Yin, Hai-Long;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1217-1222
    • /
    • 2002
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of the interface crack. This paper investigates the effects of the hole (existed along the path of the crack propagation) shape on the dynamic interface crack propagation behavior by comparing the experimental isochromatic fringes to the theoretical stress fields.

A Study on the Measurement of Stress Intensity Factor Considering of High Order of Stress Field in the Vicinity of Crack Tip by Photoelastic Experiment (광탄성 실험에서 균열선단 응력장의 고차항을 고려한 응력확대계수 측정에 관한 연구)

  • 서재국
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.43-52
    • /
    • 2000
  • Generally, photoelastic experimental data were measured in the closed vicinity of crack tip to determine stress intensity factors of a crack with photoelastic experiment method. In this case, only the first order term has been considered in the equation of stress field. But because it is very difficult to measure the correct photoelastic data in the closed vicinity of crack, the accuracy of experimental results was very poor. By including the high order terms in the stress field equation we could obtain the accurate S.I.F values by using clear photoelastic data in the distant region from crack tip instead of unclear photoelastic data in the vicinity of crack tip.

  • PDF

Propagation behavior of the interface crack through a hole (구멍을 통과하는 계면균열의 전파거동)

  • Lee, O.S.;Yin, H.L.;Hwang, S.W.;Byun, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.127-131
    • /
    • 2000
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of an interface crack. This paper investigates determined the effects of the hole (existed on the path of the crack propagation) on the crack propagation behavior by comparing the experiment isochromatic fringes to the theoretical stress fields.

  • PDF

A Basic Research on Estimation of Material Condition by Using Stress Dependency of Sound Speed (음속의 응력의존성을 이용한 재료 상태평가에 대한 기초적 연구)

  • Kim, K.J.;Jhang, K.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.53-60
    • /
    • 1996
  • In the conventional linear elasticity, sound speed is determined by only elastic modulus and density of the medium. In actual, however, sound speed depends on the stress and this dependency becomes nonlinear as the stress increases. These phenomena can be introducing nonlinear elastic modulus. In this paper, relationships between nonlinear elastic modulus up to 4th order and the internal status of materials are discussed through computer simulations and experiments. For the measurement of sound speed, a new type of measurement system using ultrasonic wave is proposed on the basis of ultrasonic pulse echo method which has been generally used in nondestructive ultrasonic test equipment. In order to confirm the stress dependency of sound speed, several experiments are carried out for alumina specimen.

  • PDF

Finite Element Method for Structural Concrete Based on the Compression Field Theory (압축응력장 이론을 적용한 콘크리트 유한요소법 개발)

  • 조순호
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.151-159
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory) concept such as the effect of compression softening in cracked concrete, and macroscopic and rotating crack models etc. was presented for the nonlinear behaviour of structural concrete. In this category, tangential or secant material stiffnesses for cracked concrete were also defined and discussed in view of the iterative solution schemes for nonlinear equations. Considering the computational efficiency and the ability of modelling the post-ultimate behaviour as major concerns, the incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Nonlinear Analysis of structrual Concrete by FEM : Monotonic Loading) developed baed on the CFT constitutive relationships and the incremetal solution strategy described enables the predictions of strength and deformation capacities in a full range. crack patterns and their corresponding widths, and yield extents of reinforcement. As the verfication purpose of NASCOM, the prediction of Cervenka's panel test results including the load resistance and the deformation history was made. A limited number of predictions indicate a good correlation in a general sense.

  • PDF

A Thermal Stress Analysis of Beams with Out-of-Plane Warping (면외 워핑함수를 고려한 보 구조물의 기계 및 열응력 해석)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • In this paper, a methodology, which is able to predict the thermal stresses accurately yet efficiently, is presented for beam structures via Saint-Venant's principle. In general, higher-order beam theories have been known to be effective for the prediction of thermal stresses. In contrast to this, we propose the method to predict the thermal stresses of beam structures by post-processing the classical beam theory via Saint-Venant's principle. The approach includes an out-of-plane warping displacement to account for the through-the-thickness thermal deformation. With this, one can accurately recover the thermal stresses as compared to the elasticity solutions. In fact, they are identical for the beams made of isotropic materials. The effect of out-of-plane warping is also investigated, it turns out that the effect is negligible in mechanical stress analysis but not in thermal stress analysis.

Mechanical Stability Analysis of a High-Level Waste Repository for Determining Optimum Cavern and Deposition Hole Spacing (고준위폐기물 처분장의 최적 공동간격 및 처분공간격을 결정하기 위한 역학적 안정성 해석)

  • 박병윤;권상기
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.237-248
    • /
    • 2000
  • Based on the preliminary results from the therm analysis, which is currently carrying, three-dimensional computer simulations using a finite element code, ABAQUS Ver. 5.8, were designed to determine the mechanically stable cavern and deposition hole spacing. Linear elastic modeling for the cases with different cavern and deposition hole spacing were carried out under three different in situ stress conditions. From the simulations, the response of the rock to the stress redistribution after the excavation of the openings could be investigated. Also the optimum cavern and deposition hole spacing could be estimated based on the factor of safety. When the in situ stress determined from the actual stress measurements in Korea were used, the case with cavern spacing of 40m and deposition hole spacing of 3m was in very stable condition, because the factor of safety was calculated as 3.42., When the in situ stress conditions for Sweden and Canada were used, the previous case, they seem to be in stable condition, since the factors of safety are still higher than 1.0. From these results, it was concluded that the rock will not fail even after the stress redistribution.

  • PDF

Mechanical Behaviour of Earlywood and Latewood under Longitudinal Compression Load (종압축확중하에서 춘채와 추재의 역학적 거동)

  • Kang, Chun-Won;Juichi, Tsutsumi;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.76-83
    • /
    • 2001
  • This study was carried out to clarify the mechanical behaviour of the earlywood and the latewood to the compressive load applied parallel to the grain. The results from the analysis of Japanese cedar wood (Cryptomeria japonica) were used to introduce a concept on stress-strain behaviour of the earlywood and the latewood. There was a significant differences in the mechanical behaviour of the earlyWood and the latewood. In the earlywood, the rate of cell wall upon annual ring was almost similar and the strain increased linearly with the stress increased. However, the rate of cell wall upon annual ring varied in the latewood and the strain of that increased curve-linearly with the stress increased. The longitudinal compression modulus of elasticity (MOE) variation by loading speed on latewood specimens and earlywood specimens shows no significant difference. The modulus of rupture (MOR) and MOE of latewood were about 4 times higher than those of earlywood.

  • PDF