• Title/Summary/Keyword: 탄성에너지

Search Result 612, Processing Time 0.034 seconds

Experimental Study on the Characteristics of Turbulent Wall Pressure Fluctuation Over Compliant Coatings (유연재 코팅 평판의 난류 변동압력 특성에 관한 실험적 연구)

  • Park, Kyung-Hoon;Lee, Seung-Jae;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.293-300
    • /
    • 2007
  • Turbulent boundary layer over an underwater vehicle is formed when it moves underwater and wall pressure fluctuation within the turbulent boundary layer generates flow-induced noise by exciting the elastic hull of the underwater vehicle. One of the methods to reduce this flow noise is to attach a compliant layer on the surface of the vehicle. In order to observe the possibility of noise reduction in the water when the compliant layer treatments are applied on the surface, three types of specimens those are a bare steel plate, a steel plate coated with neoprene and a steel plate with polyurethane coating material are tested at various flow speeds in a low noise cavitation tunnel. This paper presents the results of measurements and analysis of wall pressure fluctuations which is a main source of flow noise, within the turbulent boundary layer on three specimens. Its results could be shown that about 10dB reduction of wall fluctuation pressure at high frequencies was achieved due to the dissipation of turbulent energy by the compliant coating while it makes the turbulent boundary layer thicker and changes the behavior of turbulent flow in the layer.

Study the Estimation of the Number of Bridging Fibers of Multidirectional Glass/Epoxy Laminates Using the Acoustic Emission Signals (음향 방출 신호를 이용한 다방향 유리/에폭시 복합재 적층판의 가교된 섬유 수 추정에 관한 연구)

  • Hyun-Jun Cho;Seung-Ah Oh;In-Gul Kim
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.316-324
    • /
    • 2024
  • This paper presents a study on estimating the number of bridging fibers in multidirectional glass/epoxy composite laminates using acoustic emission signals. DCB test was conducted for analyzing the fracture behavior of multidirectional composite laminates, and acoustic emission sensor was utilized to measure the elastic wave generated upon specimen fracture. For unidirectional composite laminates, the initial number of bridging fibers was estimated through reference paper and fiber volume fraction. To estimate the initial number of bridging fibers for multidirectional composite laminates, the relative ratio of acoustic emission signals was utilized. The estimated number of bridging fibers was applied to FEM, and the results of FEM showed good agreement with experimental results.

Three-Dimensional Vibration Analysis of Solid and Hollow Hemispheres Having Varying Thickness (변두께를 갖는 두꺼운 반구형 쉘과 반구헝체의 3차원적 진동해석)

  • 심현주;장경호;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components μ/sub Φ/, μ/sub z/, and μ/sub θ/ in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the Φ and z directions. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3-D Ritz solutions and other 3-D finite element ones.

Stress-Strain Responses of Concrete Confined by FRP Composites (FRP 합성재료에 의하여 구속된 콘크리트의 응력-변형률 응답 예측)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.803-810
    • /
    • 2007
  • An analytical method capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (fiber reinforced polymers) composites in a rational manner is presented. Its underlying idea is that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure, and can be utilized to estimate the load-carrying capacity of concrete by considering the corresponding accumulated damage. Following from this, an elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. The proposed method enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods. Several existing analytical methods that can predict the overall response were also examined and discussed, particularly focusing on the way of considering the volumetric expansion. The results predicted by the proposed and Samaan's bilinear equation models correlated with observed results with a reasonable degree, however it can be judged that the latter is not capable of predicting the response of lateral strains correctly due to incorporating the initial Poisson's ratio and the final converged dilation rate only. Further, the proposed method seems to have greater benefits in other applications by the use of the fundamental principles of mechanics.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).

Seismic AVO Analysis, AVO Modeling, AVO Inversion for understanding the gas-hydrate structure (가스 하이드레이트 부존층의 구조파악을 위한 탄성파 AVO 분석 AVO모델링, AVO역산)

  • Kim Gun-Duk;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.643-646
    • /
    • 2005
  • The gas hydrate exploration using seismic reflection data, the detection of BSR(Bottom Simulating Reflector) on the seismic section is the most important work flow because the BSR have been interpreted as being formed at the base of a gas hydrate zone. Usually, BSR has some dominant qualitative characteristics on seismic section i.e. Wavelet phase reversal compare to sea bottom signal, Parallel layer with sea bottom, Strong amplitude, Masking phenomenon above the BSR, Cross bedding with other geological layer. Even though a BSR can be selected on seismic section with these guidance, it is not enough to conform as being true BSR. Some other available methods for verifying the BSR with reliable analysis quantitatively i.e. Interval velocity analysis, AVO(Amplitude Variation with Offset)analysis etc. Usually, AVO analysis can be divided by three main parts. The first part is AVO analysis, the second is AVO modeling and the last is AVO inversion. AVO analysis is unique method for detecting the free gas zone on seismic section directly. Therefore it can be a kind of useful analysis method for discriminating true BSR, which might arise from an Possion ratio contrast between high velocity layer, partially hydrated sediment and low velocity layer, water saturated gas sediment. During the AVO interpretation, as the AVO response can be changed depend upon the water saturation ratio, it is confused to discriminate the AVO response of gas layer from dry layer. In that case, the AVO modeling is necessary to generate synthetic seismogram comparing with real data. It can be available to make conclusions from correspondence or lack of correspondence between the two seismograms. AVO inversion process is the method for driving a geological model by iterative operation that the result ing synthetic seismogram matches to real data seismogram wi thin some tolerance level. AVO inversion is a topic of current research and for now there is no general consensus on how the process should be done or even whether is valid for standard seismic data. Unfortunately, there are no well log data acquired from gas hydrate exploration area in Korea. Instead of that data, well log data and seismic data acquired from gas sand area located nearby the gas hydrate exploration area is used to AVO analysis, As the results of AVO modeling, type III AVO anomaly confirmed on the gas sand layer. The Castagna's equation constant value for estimating the S-wave velocity are evaluated as A=0.86190, B=-3845.14431 respectively and water saturation ratio is $50\%$. To calculate the reflection coefficient of synthetic seismogram, the Zoeppritz equation is used. For AVO inversion process, the dataset provided by Hampson-Rushell CO. is used.

  • PDF

A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection (초음파 열 영상 검사를 이용한 브레이징 접합 결함 검출)

  • Cho, Jai-Wan;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.426-431
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly.

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.

Effects of Moisture Content on Physical Properties of Extruded Cereal Flours (수분함량에 따른 곡류 압출성형물의 물리적 특성 비교)

  • Kim, Cheol-Hyun;Jin, Tie;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.11
    • /
    • pp.1603-1610
    • /
    • 2012
  • The effects of moisture content on the physical properties of cereal extrudates were investigated. Cereal flours (rice, wheat, corn, barley, and oat) were extruded at a barrel temperature of $130^{\circ}C$, feed rate of 120 g/min, and various moisture contents (20, 22.5, 25, 27.5, and 30%). Proximate content, expansion index, specific length, bulk density, breaking strength, apparent elastic modulus, water absorption index (WAI), water solubility index (WSI), specific mechanical energy (SME) input, paste viscosity, and color values were analyzed. Expansion ratio of extruded corn flour was higher than that of other extrudates at low moisture content. Bulk density, specific length, and elastic modulus in all cereals decreased with an increase in moisture content. The WAI increased with an increase in moisture content, whereas WSI decreased. SME input of extruded corn flour was higher than those of other cereal flours at lower moisture content, whereas that of oat flour extrudate was lower than those of other cereals at higher moisture content. Lightness of extruded rice flour was lighter than those of other cereals while that of extruded barley flour was darker.

A Study on the Side Impact Characteristics Occurred from SUV-to-Passenger Car using LS-DYNA (LS-DYNA를 이용한 SUV와 승용차의 측면충돌 특성에 대한 연구)

  • Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.217-226
    • /
    • 2018
  • Since the sides of a vehicle are designed asymmetrically unlike its front or rear, the degree of deformation of the car body greatly differs depending on the site of collision if a broadside collision takes place. When elastic deformation and plastic deformation occur in the car body occur due to a collision, the kinetic energy is absorbed into the body, and the momentum decreases. Generally, an analysis of traffic accidents analyzes the vehicle's behavior after a collision by the law of momentum conservation and corrects the error of the amount of energy absorption due to the deformation of the car body, applying a restitution coefficient. This study interpreted a finite element vehicle model applying the structure of the car body and the material properties of each part with LS-DYNA, analyzed the result and drew the restitution coefficient and the depth of penetration according to the contact area of the vehicle in a broadside collision between an SUV and a passenger car. When the finally calculated restitution coefficient and depth of penetration were applied to the examples of the actual traffic accidents, there was an effect on the improvement of the error in the result. It was found that when the initial input value, drawn using the finite element analysis model, it had a higher reliability of the interpretation than that of the existing analysis techniques.