• Title/Summary/Keyword: 탄성고무

Search Result 317, Processing Time 0.035 seconds

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

A Study on the Friction and Anti-abrasion Properties of Rubber Blends for Shoes Outsole (신발 밑창용 고무 블렌드물의 마찰 및 내마모 특성에 대한 연구)

  • Pyo, Kyung-Duk;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.324-328
    • /
    • 2011
  • Blends were prepared by mixing BR, SBR and NBR to CIIR, which is used for outsole, at various mixing ratio, and effect of the mixing ratio on abrasion resistance and coefficient of friction was analyzed. CIIR interferes the crystalline formation of BR in BR/CIIR blends and this could be one of the factors that rapidly decreases abrasion resistance of BR/CIIR blends. $Tan{\delta}$ peak area of CIIR/BR blends decreased as the amount of BR present in the blends increased, and similarly, the coefficient of friction tended to decrease. Stress relaxation rate and rebound resilience of CIIR/BR blends decreased with increasing BR content, and it was presumed that their rebound resilience was affected by stress relaxation rate.

Improvement of Dynamic Characteristics of Torsion on the Marine Propulsion Shafting System with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진축계 비틀림의 동특성 개선)

  • Lee, D.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.923-929
    • /
    • 2003
  • As for the marine propulsion shafting system using 4 stroke diesel engine, it is common to apply a reduction gear box between diesel engine and shafting to increase propulsion efficiency, which requires inevitably a certain elastic coupling to avoid chattering and hammering inside of gear box. In this study, the optimum method of rectifying propulsion shafting system in case of 750 ton fishing vessel is theoretically studied in a view of dynamic characteristics of torsion. After the replacement of diesel engine and gear box, the torsional vibration get worse and so some countermeasures are needed. The elastic coupling is modified from a present rubber coupling of block type having relatively high torsional stiffness to a rubber coupling haying two serially connected elements. Torsional vibration damper was installed at crankshaft free end additionally and moment of inertia of flywheel was adjusted. The dynamic characteristics of shafting system was improved by these modification. The theoretical analysis of torsional vibration are compared to measurement results using two laser torsion meters during the sea trial.

F.E. Analysis of the Radial Tire Inflation Using the Hyperelastic Properties of Rubber Compounds Sampled from a Tire (타이어 고무배합물의 초탄성을 고려한 레이디얼 타이어의 팽창에 관한 유한요소해석)

  • 김용우;김종국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.125-134
    • /
    • 2003
  • In this study, Mooney-Rivlin 1st model and Mooney-Rivlin 3rd model are adopted as strain energy density functions of the rubber compounds of a radial tire. It is shown that the FE analysis using Mooney-Rivlin models for rubber compounds may provide good approximations by employing the appropriate strain range of experimental stress-strain data in a way to describe the stress-strain relationship accurately. Especially, Mooney-Rivlin 3rd model gives an accurate stress-strain relationship regardless of the fitting strain range used within the strain of 100%. The static nonlinear FE analysis of a tire inflation is performed by employing an axisymmetric model, which shows that the outside shapes of the tire before and after inflating the tire agree well with those of the real tire. Additionally, the deformations at crown center and turning point on sidewall, distribution of belt cord force, interlaminar shear strain are predicted in terms of variation of belt cord angle which is known as the most influential factor in inflation behavior of a tire.

Non-linear Large Deformation Analysis of Elastic Rubber Mount (고무 재질 탄성 마운트의 비선형 대변형 거동 해석)

  • Nho, In-Sik;Kim, Jong-Man;Kwak, Jeong-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2008
  • A lot of equipments installed in ships must be isolated for relaxing the shock, vibration and noise using the elastic mounts. Most of the elastic mounts are made of the rubber, however it is not easy to design the effective rubber mount. Because, in general, the rubber has a non-linear constitutive characteristics especially for a large deformation. So, there are many difficulties to estimate the accurate structural response of rubber which is the basis of the shape design of the mounts. In this study, the detailed non-linear viscoelastic large deformation finite element analysis method was dealt with. And to verify validity of the present analysis scheme, the results were compared with experiments.

A Ultimate Shear Performance of Elastomeric Bearings (탄성받침의 극한전단성능)

  • Yoon, Hye-Jin;Kwahk, Im-Jong;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • The bridge bearings are devices absorbing the displacements of the superstructure. KS F 4420 relative to the design of elastomeric bearings in Korea allows shear deformation up to 70% of total rubber height. For the elastomeric bearings to fulfill their shear function required in the design, the stability of allowable shear strain of elastomeric bearings relative to the shear failure should be guaranteed. Moreover considering the possibility that elastomeric bearings are applied to the seismic design together with isolation devices, elastomeric bearings is supposed to display higher shear performance. In this paper ultimate shear performance tests were performed. The measured ultimate shear strains were over 200%. Therefore an allowable shear strain provision becomes safe. But elastomeric bearings expected to show their performance in one united body reveled the separation of components near 200% shear strain. These separation in elastomeric bearing can cause unexpected impact or concentrated stress to bridge system considering to application of seismic design. Therefore provision relevant to separation problem is necessary.

  • PDF

Thermoplastic Film Infusion Process for Long Fiber Reinforced Composites Using Rubber Expandable Tools (고무 치공구와 필름 함침공정을 이용한 열가소성 장섬유 복합재료 성형공정 연구)

  • Kim, Dong-Wook;An, Young-Sun;Lee, Young-Kwan;Kim, Seong-Woo;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.122-132
    • /
    • 2001
  • Thermoplastic film infusion process was investigated by using a rubber tool, which intrinsically contains a thermally-expandable characteristic and effectively compensates for the pressure loss caused by thermoplastic polymer infusion. Increasing temperature up to the melting temperature of matrix, the polymer melt subsequently infused into the dry fabric, but the pressure was successfully sustained by the rubber tool. Even with the decreased resin volume, the rubber tool produced sufficiently high elastic force for continuous resin infusion. Combining D'Arcy's law with the compressibility of rubber tool and elastic fiber bed, a film infusion model was developed to predict the resin infusion rate and pressure change as a function of time. In addition, the film infusion process without the rubber tool was viewed and analyzed by a compression process of the elastic fiber bed and viscous resin melt. The compressibility of fiber bed was experimentally measured and the multiple-step resin infusion was well described by the developed model equations.

  • PDF

Experimental Study on Characteristics of Low Hardness Rubber Bearing (저경도 고무받침의 특성에 관한 실험적 연구)

  • 정길영;하동호;박건록;권형오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.39-49
    • /
    • 2002
  • In this paper, the characteristics of RB(rubber bearing) were studied by various prototype tests on RB with low hardness rubber. The characteristics of RB were tested on displacements, repeated cycles, frequencies, vertical pressures, temperature, vertical stiffness and the capability of shear deformation. The prototype test showed that the displacement and vertical pressures were the most governing factors influencing on characteristics of RB. The effective stiffness and equivalent damping of RB showed small increment in high frequency range. After the repeated cyclic test with 50's cycles, the effective stiffness and equivalent damping of RB were almost constant compared with those of the 1st cycles due to low hysteretic damping. The shear modulus of RB was reduced after large deformation, and this value of RB was partly recovered after 40 days. Finally, the shear failure test of RB was conducted, the prototype was failed over 490% of shear strain, and real size RB was failed over 430% of shear strain.

The Effects of Cure System on Vulcanization Reaction Constant and Physical Properties of Rubber Compounds (가황시스템 변화가 배합고무의 가황반응속도 및 물리적 특성에 미치는 영향)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.419-426
    • /
    • 1999
  • In this study, the reaction rate constant, activation energy, total crosslinking density, elastic constant, cure properties ($t_5,\;t_{90}$), modulus, and abrasion resistance of rubber compounds were investigated as a function of cure temperatures, cure systems and reinforcing filler loadings. Reaction rate constants showed strong dependence on thc carbon black loading, cure temperature and cure system, and increased sharply with increasing the reaction temperatures. The lowest activation energy was obtained in the efficient cure (EC) system which corresponds to the high level of sulfur to accelerator ratio, and the activation energy was decreased with decreasing the carbon black loadings. The change of carbon black loadings directly affects the modulus and abrasion resistance, but the change of cure system showed various effects on the rubber compounds. Increased carbon black loadings showed the high modulus, improved abrasion resistance and short scorch time but decrease in crosslinking density and elastic constant. Higher crosslinking density and elastic constant were shown in the EC cure system regardless of carbon black loadings, but scorch timc ($t_5$) was not affected by the change of the ratio of sulfur to accelerator. Rapid optimum cure time ($t_{90}$) were showen in the EC cure system. Also, the equivalent cure curve coefficient of rubber compound was 0.96 for conventional cure (CC) system, and 0.94 for semi-efficient cure (SEC) and EC system regardless carbon black loadings. As regarding the abrasion resistance, wear volume showed the logarithmic increase for the loaded weight.

  • PDF