• Title/Summary/Keyword: 탄산화 속도

Search Result 109, Processing Time 0.026 seconds

Controlling Factors of Particle Size Distribution during Formation of Cubic and Colloidal Calcium Carbonate Compounds (Cubic형과 Colloid형 탄산칼슘 합성에서의 입경제어 연구)

  • Ahn, Ji-Whan;Park, Chan-Hoon
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.65-72
    • /
    • 1996
  • Colloidal calcium wrbonate(diametcr 0.02-0 09 m~wja s developed to maintain the mamenl of pnriide formatio~>w ~lhoutsurlace trealment. The control factors of particle size and optimum condiliuna for compound fam*tition has not bccn studiedyet. This shldy war aimed at developing a method fur compounding colloidal calcium carbonfcte to cnl~hol cubic calciumcarbonate, and then compounding the b-o types oI precipitated calcium wrbonatc under optimum wndilrans Calc~umhydroxide was calcinated at 1, lWC far two hours, md then hydrated for 30 minutes at t i i O rprn and ambiznt temperahlle.Two-liter suspension was subjected to the contact with carbon dioxide at l5"C, 600 ipxn and C0= injection in the rate of 1 Umin Two types of dcium carbonate(cuhic calcium carbonatc(0 24.9 pm) md collnidd calcium mhnnate (0.02-0 09 pm))were compounded by "wing the concentrations of calcium oxide and ihe suspension were compounded. It was found that theoptimum concentrations of each suspensions were 5 wt % and 2.5 \I*.% respectively. ' h c key control factor af thc parlicle slzcdislribution was the concenkation al the suspension. The size of compounded particles was measured by a Zcla S k r 'fieaverage particle size of the cubic calcium carbonate aas 223.4 nm(0.223 pm), and that of thc colloidal a~lciumc arbonate was93.6 nm (0.093 km). Ihe particle sizc was evenly cantlolled on a stdblc basis in an H, O reaction system.asis in an H, O reaction system.

  • PDF

Effect of Carbonic Anhydrase on CO2 Absorption in Amine Solutions for CO2 Capture (CO2 포집용 아민 흡수제에서 탄산무수화 효소가 CO2 흡수에 미치는 영향)

  • Lee, In-Young;Kwak, No-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.607-612
    • /
    • 2017
  • The effect of carbonic anhydrase on $CO_2$ absorption rates and the heat of reaction were evaluated in various amine solutions for post combustion $CO_2$ capture process. The $CO_2$ absorption rate was analyzed in 30 wt% MEA, AMP, DMEA, MDEA aqueous solutions with and without carbonic anhydrase (250 mg/L) from bovine erythrocyte. $CO_2$ absorption rates were increased in all solutions with carbonic anhydrase. The effect of carbonic anhydrase on absorption rates was more in tertiary amine (DMEA and MDEA) solutions than in primary amine (MEA) and hindered amine (AMP) solutions. The heat of reaction of MEA, DMEA, MDEA aqueous solutions with and without carbonic anhydrase were measured using reaction calorimeter. Carbonic anhydrase decreased the heat of absorption in all solutions. The results suggested that tertiary amines that have the excellent desorption ability were suitable for applying carbonic anhydrase to the post combustion $CO_2$ capture process and the effect of carbonic anhydrase was best in MDEA solution.

CO2 Emission and Storage Evaluation of RC Underground Structure under Carbonation Considering Service Life and Mix Conditions with Fly Ash (탄산화 환경에 노출된 RC 지하구조물의 내구수명과 플라이애쉬 배합 특성을 고려한 탄소 배출 및 흡착 평가)

  • Kim, Seong-Jun;Mun, Jin-Man;Lee, Hack-Soo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.999-1009
    • /
    • 2014
  • In this paper, $CO_2$ emission and storage amount are evaluated for real RC (Reinforced Concrete) underground structure considering $CO_2$ amount including material manufacturing, moving, and construction, repairing timing stage regarding extended service life. Four mix proportions with mineral admixtures are prepared and $CO_2$ diffusion coefficient are obtained based on a micro modeling. Referred to carbonation durability limit state, $CO_2$ emission and storage amount are evaluated, which shows higher initial $CO_2$ emission is caused due to larger unit content of cement and the storage increases with more rapid carbonation velocity. Furthermore various $CO_2$ concentration is adopted for simulation of $CO_2$ evaluation including measured $CO_2$ concentration (600ppm). With higher concentration of $CO_2$ outside, carbonation velocity increases. In order to reduce $CO_2$ emission through entire service life, reducing initial $CO_2$ emission through mineral admixture like fly ash is more effective than increasing $CO_2$ storage through OPC since $CO_2$ is significantly emitted under manufacturing OPC and $CO_2$ storage in cover concrete of RC structure is not effective considering initial concrete amount in construction.

Durability Analysis of Underground Structure based on Limit State Function Considering Carbonation (탄산화 기반의 한계상태함수를 활용한 지하구조물의 내구성 평가)

  • Choo, Jin-Ho;Lee, Tae-Jong;Yoon, Tae-Gook;Lee, Sang-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.69-75
    • /
    • 2014
  • The priority of repair areas are chosen with the probability distribution of 0.3mm wide crack and carbonation induced corrosion. Data is analyzed and evaluated based on the 28 section of Precise Inspection for Safety and Diagnosis (PISD) in seoul. As the crack is distributed in log-normal, the carbonation and cover are in normal distribution. To have rational in repair sections among 503 sheets of underground structure, it is adopted the reliability index as well as the environment factors: strength, sonic speed, $CO_2$ concentration, corrosion, and content of chloride.

Effect of RPM and Temperature on the CSD in the CMSMPR Calcium Carbonate Crystallizer (연속식 탄산칼슘 결정화기에서 교반속도와 온도가 입도분포에 미치는 영향)

  • Han, Hyun Kak;Jeong, Ok Hee;Lim, Mi Hee;Kim, Jin A
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.289-293
    • /
    • 2006
  • In the CMSMPR (continuous mixed suspension mixed product removal)system, the effect of temperature and RPM on the CSD (crystal size distribution) in the calcium carbonate process was investigated. In the steady state operation, the change of solution pH was small. At the low temperature and below 300 RPM, volume mean size change of calcium carbonate was stable and CSD was narrow. In the SEM view, calcite and aragonite was obtained.

Examining and Refining the Code for Durability Design Criteria of Concrete Carbonation (개정 콘크리트 탄산화 내구성 설계기준의 적용상 문제점 분석)

  • Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.285-293
    • /
    • 2023
  • In this research, we embarked on a meticulous analysis of the challenges inherent in real-world scenarios relating to the durability design standards of engineered concrete structures and the assessment of carbonation durability in concrete guidelines. Our investigation brought to light substantial issues concerning constructability and quality assurance. The genesis of these problems is the exclusive application of prescribed strength to exterior walls, neglecting other elements to facilitate smoother licensing procedures. While this methodology aims to mitigate financial constraints in alignment with enhanced standards, it invariably invites complications. Furthermore, it is imperative to resolve the uncertainty surrounding durability evaluations by establishing a clear and definitive objective. Alongside this, actionable steps must be formulated to forestall the emergence of fissures between the floors of residential buildings, particularly apartment complexes. It is equally essential to tackle issues connected to application by devising a comprehensive management strategy for potential cracking during the phase of maintenance.

Synthesis and Crystallization of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System Ca($OH_2 O$)-$H_2$-$CO_2$ (Ca($OH_2$)-$H_2 O$-$CO_2$계의 기액반응으로부터 비정질 탄산칼슘의 합성 및 결정화)

  • Im, Jae-Seok;Kim, Ga-Yeon;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.73-87
    • /
    • 2004
  • The synthesis and crystallization of amorphous calcium carbonate($CaCO_3$.$nH_2 O$) obtained from gas-liquid reaction between aqueous solution of calcium hydroxide and carbon dioxide at 15~$50^{\circ}C$ are investigated by electrical conductometry, XRD and TEM. The results are as follows: The initial reaction products prior to the formation of precipitated calcium carbonate is amorphous calcium carbonate. The electrical conductivity values in the slurry are decreased during the formation of amorphous calcium carbonate which covers particle surface of calcium hydroxide and retard the dissolution of calcium hydroxide into the solution. that amorphous calcium carbonate is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. While amorphous calcium carbonate crystallizes into chain-like calcite, the conductivity values are recovered rapidly and the apparent viscosity of slurry containing higher concentration of calcium hydroxide increase. At below pH 9.5, chain-like calcite separates into individual particles to form precipitated calcium carbonate. The formation and synthetic temperature range of amorphous calcium carbonate is most suitable a primary decreasing step(a-step) at $15^{\circ}C$ in the electrical conductometry.

  • PDF

A study on the powder synthesis of the amorphous calcium carbonate precursor for phosphors by wet chemical method (습식법에 의한 형광체 제조용 비정질 탄산칼슘 전구체 분말의 합성에 관한 연구)

  • 최종건;김판채;이충효
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.302-308
    • /
    • 2000
  • Stable amorphous calcium carbonate were synthesized from the serial work for the synthetic conditions such as concentration of solution, reaction temperature, aging time and pH of mother liquor. By using this as a precusor, calcite, aragonite and vaterite crystal particles were obtained in the water from adequate crystallization conditions. Furthermore, characterization for flourescence were performed by using crystals which were crystallized from the Sn dopped amorphous calcium carbonate. Calcite showed the most intensive emission and the center of emission wavelength was 464 nm with pure blue color. Calcite is expected to be used as phosphor for flourescent lamp because the maximum emission intensity was obtained from the excitation with 255 nm wavelength.

  • PDF

Carbon-capture Performance of foam Concrete Using Stainless Steel Slag (스테인리스 스틸 AOD 슬래그를 이용한 폼 콘크리트의 탄소포집 성능)

  • Kim, Byung Jun;Yoo, Sung Won;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.18-25
    • /
    • 2020
  • The purpose of this study is to investigate the mechanical and carbon-capture properties of foam concrete containing stainless steel argon oxygen decarbonization(AOD) slag. AOD slag was used as a binder, and foam concrete having a foaming ratio of 69 ± 0.5 % and a slurry density of 573.2 to 578.6 kg / ㎥ was produced. In order to examine the effect of carbonation, blended specimen was cured by two types : normal curing and CO2 curing. As a result of the experiment, the specimens incorporating AOD slag showed higher compressive strength than Plain after CO2 curing. According to the analysis of the image of foam concrete, it was confirmed that the ST30 has a lower total pore volume and average pore size than plain, resulting in high compressive strength. The SEM analysis confirmed the formation of calcite by carbonation of AOD slag. Through the thermogravimetric analysis, the increase of CO2 uptake was confirmed by the incorporation of AOD slag. Foam concrete has a higher porosity than normal concrete, so it is expected that carbon-capture performance can be improved by using a AOD slag.

Lithium Recovery from NCM Lithium-ion Battery by Carbonation Roasting with Graphite Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 그라파이트 첨가 탄산화 배소와 수침출에 의한 Li 회수)

  • Lee, So-Yeon;Lee, Dae-Hyeon;Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.26-33
    • /
    • 2022
  • Owing to the demand for lithium-ion batteries, the recovery of valuable metals from waste lithium-ion batteries is required in future. A pyrometallurgical treatment is appropriate for recycling a large number of waste lithium-ion batteries, but Li loss to slag and dust present a significant challenge. This research investigated carbonation roasting and water leaching behaviors in Li-ion batteries by graphite addition to recover Li from the NCM-based cathode materials of waste Li-ion batteries. When 10 wt% of graphite was added, CO and CO2 gases were emitted with a rapid weight reduction at apporoximately 850 K, when heated in Ar and CO2 atmosphere. After the rapid weight reduction, NCM was decomposed and reduced to metal oxides and pure metals. In the carbonation roasting of black powder (NCM+graphite), O2 is generated via the decomposition of NCM, and an oxides, such as Li2O and NiO were were also generated. Subsequently, Li2O reacts with CO2 to generate Li2CO3, and a part of NiO was reduced by graphite to produce metal Ni. In addition, up to 94.5 % Li2CO3 with ~99.95 % purity was recovered via water leaching after carbonation roasting.