• Title/Summary/Keyword: 탄산화도

Search Result 793, Processing Time 0.024 seconds

Pore Characteristics of Stainless Steel Slag AOD Blended Cement Pastes by Carbonation Curing (스테인리스 스틸 슬래그 AOD 혼입 시멘트 페이스트의 탄산화 양생에 의한 공극특성)

  • Hwang, Chul-Sung;Park, Kyoung Tae;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • In this study, the mechanical and micro-structural change of cement pastes incorporating Stainless-Steel Slag Argon Oxygen Decarburization Slag (STS-A) containing ${\gamma}-C_2S$ as a carbon capture materials were investigated with carbonation curing condition. ${\gamma}-C_2S$ is non-hydraulic, therefore does not react with water. But ${\gamma}-C_2S$ has a reactivity under carbonation curing condition with water. The reaction products fill up the pore in pastes. The microstructure of STS-A blended cement pastes could be densified by this reaction. The pore structure of cement pastes incorporating STS-A was measured using mercury intrusion porosimetry (MIP) after carbonation curing ($CO_2$ concentration is about 5%). Also the fractal characteristics were investigated for the effect of carbonation curing on the micro-structural change of paste specimens. From the results, the compressive strength of carbonated specimens incorporating STS-A increased and pore-structure of carbonated paste is more complicated.

Carbonation Treatment of EAF Slag for Using Aggregate of Concrete (EAF-Slag의 콘크리트용(用) 골재(骨材)로의 활용(活用)을 위한 탄산화(炭酸化) 처리(處理) 연구(硏究))

  • Yoo, Kwang-Suk;Ahn, Ji-Whan;Lee, Kyung-Hoon
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.36-41
    • /
    • 2009
  • The objectives of this study are focusing on the issue with efficiently recycling for EAF slag as construction material such as an aggregate of concrete. This study can be classified mainly into two categories: the first section is the carbonation treatment of Electric Arc Furnace(EAF)-slag for obtaining soundness as using aggregate of concrete. And the second section is the application of carbonated EAF-slag on the mortar test to evaluate the stability and mechanical property, which is compressive strength, according to the replacement of EAF-slag on the mortar. It was known that pH of EAF-Slagle according to carbonation time decreases drastically to 7 within several sec of carbonation, and a calcite is formed on the surface of EAF slag. The formation of calcite during the carbonation process of EAF slag lead to fill at pore in the texture of EAF-Slag surface, and than the porosity of EAF-slag decreases with carbonation process. In the mortar test, compressive strength, according to the replacement of EAF-Slag to sand on the mortar, the compressive strength of mortar increased as the 50% replacement ratio of EAF slag for sand was above 10% higher than that of reference mortar according to 50% replacement of EAF slag.

Mineral Carbonation of Serpentinite: Extraction, pH swing, and Carbonation (사문암(Serpentinite)을 이용한 광물탄산화: Mg 추출과 pH swing 및 탄산화)

  • LEE, Seung-Woo;Won, Hyein;Choi, Byoung-Young;Chae, Soochun;Bang, Jun-Hwan;Park, Kwon Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.205-217
    • /
    • 2017
  • Mineral carbonation by indirect method has been studied by serpentinite as cation source. Through the carbonation of $CO_2$ and alkaline earth ions (calcium and magnesium) from serpentinite, the pure carbonates including $MgCO_3$ and $CaCO_3$ were synthesized. The extraction solvent used to extract magnesium (Mg) was ammonium sulfate ($(NH_4)_2SO_4$), and the investigated experimental factors were the concentration of $(NH_4)_2SO_4$, reaction temperature, and ratio of serpentinite to the extraction solvent. From this study, the Mg extraction efficiency of approximately 80 wt% was obtained under the conditions of 2 M $(NH_4)_2SO_4$, $300^{\circ}C$, and a ratio of 5 g of serpentinite/75 mL of extraction solvent. The Mg extraction efficiency was proportional to the concentration and reaction temperature. $NH_3$ produced from the Mg extraction of serpentinite was used as a pH swing agent for carbonation to increase the pH value. About 1.78 M of $NH_3$ as the form of $NH_4{^+}$ was recovered after Mg extraction from serpentinite. And, the main step in Mg extraction process of serpentinite was estimated by geochemical modeling.

The Effect of Supercritical Carbonation on Quality Improvement of Recycled Fine Aggregate (초임계 탄산화 반응이 순환잔골재의 품질개선에 미치는 영향)

  • Heo, Seong-Uk;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • The objective of this work is to prove a possibility of void f illing through a carbonation f or the purpose of improving the quality of recycled aggregate. Carbonation can permanently immobilize CO2, which is a greenhouse gas, and thus provides additional benefit on environment. In this work, recycled fine aggregate was reacted using gaseous CO2 and supercritical CO2(scCO2) in a closed chamber, and the changes in physical properties of the recycled f ine aggregate bef ore and af ter carbonation were analyzed using the apparent density, skeletal density, pH, and FE-SEM measurements. Thereafter, a mortar specimen was prepared and a compressive strength was measured. According to the experimental results, it was found that the increase in the apparent density and the true density was higher by the reaction with scCO2, which was conducted at high temperature and high pressure compared to the reaction with gaseous CO2. In addition, the pH of the eluted water was found to have a larger initial decrease than that observed with samples from reaction by gaseous CO2. The shape and amount of calcium carbonate crystals were also found to be larger than that from gaseous CO2. The increase in compressive strength was the largest when using recycled fine aggregate reacted with scCO2. It was clear that quality improvement of recycled fine aggregate was higher with scCO2 than with gaseous CO2.

Study on the Mineral Carbonation from Autoclaved Lightweight Concrete (ALC) (경량 기포콘크리트를 이용한 광물탄산화 연구)

  • Chae, Soo-Chun;Lee, Seung-Woo;Bang, Jun-Hwan;Song, Kyoung-Sun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.439-450
    • /
    • 2020
  • Global warming caused by the emission of greenhouse gases into the atmosphere is being treated as a major problem for the human life, and mineral carbonation is drawing attention as one of many countermeasures against this situation. In this study, mineral carbonation experiments using autoclaved lightweight concrete (ALC) were performed under various conditions to determine its potential as a carbonation material. ALC can be regarded as a promising material for carbonation because it contains about 27 wt.% of CaO, a major component of mineral carbonation. The CaCO3 content produced as a result of the carbonation of ALC calculated on the assumption that all of the CaO content participates in mineral carbonation is about 40 wt.%. The optimum conditions for the mineral carbonation reaction from ALC are the solid-liquid ratio of 0.01 and the reaction time of 180 minutes when calcite is considered as a single product, or 0.06 and 180 minutes when mixture of calcite and vaterite can be considered. The coexistence of vaterite with calcite at solid-liquid ratio of 0.06 or higher was interpreted to be the case where vaterite formed in the later stage and did not change to calcite until the reaction was completed.

Production of Hydrogen by Thermochemical Transition of Lauan Sawdust in Steam Reforming Gasification (수증기개질 가스화반응을 이용한 나왕톱밥으로부터 수소제조특성)

  • Park, Sung-Jin;Kim, Lae-Hyun;Shin, Hun-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.908-912
    • /
    • 2012
  • Lauan sawdust was gasified by steam reforming for hydrogen production from biomass waste. The fixed bed gasification reactor with 1m height and 10.2 cm diameter was utilized for the analysis of temperature and catalysts effect. Steam was injected to the gasification reactor for the steam reforming effect. Lauan sawdust was mixed with potassium carbonate, sodium carbonate, calcium carbonate, sodium carbonate + potassium carbonate and magnesium carbonate + calcium carbonate catalysts of constant mass fraction of 8:2 which was injected to the fixed gasification equipment. The compositions of production gas of gasification reaction were analyzed at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. Fractions of hydrogen, methane and carbon monoxide gas in the production gas increased when catalysts were used. Fractions of hydrogen, methane and carbon monoxide gas were increased with increasing temperature. The highest hydrogen yield was obtained with sodium carbonate catalyst.

A Study on Probability Carbonation Progress of Concrete After Repair Method of Carbonated RC Structures (탄산화가 진행된 기존 RC구조물의 보수공법 적용후 탄산화 진행 예측에 관한 확률론적 연구)

  • Lee, Hyung-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.41-42
    • /
    • 2016
  • As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 20% and 100%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

Carbonation Mitigation of the High Volume Admixture Concrete according to Application Method of Carbonation Resistance Material (탄산화 억제제 사용 따른 혼화재 다량 치환 콘크리트의 탄산화 억제)

  • Jo, Man-Ki;Choi, Young-Doo;Son, Ho-Jung;Woo, Dae-Hun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.271-273
    • /
    • 2012
  • This paper is to investigate the effect of waste cooking oil(WCO) on carbonation resistance of high volume fly ash and blast furnace slag concrete. WCO and paint were applied for carbonation resistance materials. As expected, the application of WCO to the concrete help it reduce carbonation depth remarkably, regardless of mixture types. This may be due to the fact that WCO makes the capillary pore block by activating saponification. It is found that the degree of carbonation reduce due to WCO is much higher than the case by Paint.

  • PDF

A Study on Predicting Progress Carbonation After Concrete Structures Repair (콘크리트 구조물 보수후 탄산화 진행 예측 평가 방법 연구)

  • Lee, Hyung-Min;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.64-65
    • /
    • 2013
  • Recently, people are concerned about how to maintain structure well because of safety. For effective maintenance of the structure, it should be resolved about carbonation, Durability, and Service Life issues. Solving that problem will Increase Safety of Structure. The carbonation velocity is produced an effect on carbon dioxide density of surrounding near structures, the concrete quality Therefore, This study compares the Velocity of carbonation due to maintenance of the structure. Also, this study will find Service Life of Concrete Structure through Predicting Carbonation Depth.

  • PDF

Component and Phase Analysis of Calcium Silicate Cement Clinker by Raw Materials Mix Design (원료 배합에 따른 칼슘 실리케이트 시멘트 클링커의 성분 및 상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • In the cement industry, in order to reduce CO2 emissions, technology for raw materials substitution and conversion, technology for improving process efficiency of utilizing low-carbon new heat sources, and technology for collecting and recycling process-generated CO2 are being developed. In this study, we conducted a basic experiment to contribute to the development of CSC that can store CO2 as carbonate minerals among process-generated CO2 capture and recycling technologies. Three types of CSC clinker with different SiO2/(CaO+SiO2) molar ratios were prepared with the clinker raw material formulation, and the characteristics of the clinker were analyzed. As a result of analysis and observation of CSC clinker, wollastonite and rankinite were formed. In addition, as a result of the carbonation test of the CSC paste, it was confirmed that calcite was produced as a carbonation product. The lower the SiO2/(CaO+SiO2) molar ratio in the CSC clinker chemical composition, the lower the wollastonite production amount, and the higher the rankinite production amount. And the amount of calcite production increased with the progress of carbonation of the CSC paste specimen. It is judged that rankinite is more reactive in mineralizing CO2 than wollastonite.