• Title/Summary/Keyword: 탄산염 광물화

Search Result 72, Processing Time 0.032 seconds

Mineralogy and Geochemistry of Carbonate Precipitaties from CO2-rich Water in the Jungwon Area (중원지역 탄산온천수의 탄산염 침전물에 관한 광물학적 및 지구화학적 연구)

  • 김건영;고용권;최현수;김천수;배대석
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.22-36
    • /
    • 2000
  • 중원지역 지열수의 CO2 가스의 용축과 수반된 탄산염 침전물의 광물학적 특성을 밝히기 위하여 탄산염 침전물에 대해 광물학적 및 지구화학적 분석방법을 적용하여 보았다. 이들은 매년 수 mm의 두께로 저수조내에 침전되며 미세한 층상으로 결정화되어 있고, 검은 갈색의 얇은 층들이 반복적으로 존재하고 있다. 침전물은 비교적 순수한 방해석으로 되어 있으며 1M HCl로 처리하여 잔류물을 XRD 분석한 결과는 카올린 광물 및 일라이트질 광물이 확인되었다. 전자현미분석에 의하면 검은 갈색층은 주로 방해석과 Fe나 Mn 산화광물의 집합체이며 소량의 점토광물도 함께 섞여 있는 것으로 추정된다. Fe의 경우에는 주로 방해석내 Ca자리를 치환하여 존재하며 일부 산화광물로 함께 침전된 것으로 보인다. 반면에 Mn의 경우는 일부는 Fe처럼 방해석결정구조 내에서 Ca를 치환하면서 존재하기도 하지만 주로 산화물의 형태로 존재하는 것으로 보인다. 후방산란전자상(BSEI) 관찰에 의하면 Fe와 Mn 모두 매우 미세한 입자의 산화광물들로 밀집해 있는 부분이 관찰되기도 한다. 중원지역 탄산수로부터 방해석이 침전되는 과정은 CO2 가스가 방출되면서 pH가 증가하면서 방해석 및 Fe, Mn 산화물이 과포화상태가 되어 침전되는 것으로서 해석할 수 있다. 또한 지하 심부를 순환하면서 활발한 물-암석반응의 결과로 Si나 Al 및 기타 이온들의 함량이 상대적으로 높았던 탄산수가 pH가 높아지면서 카올린 광물이나 일라이트질 광물, 석영등의 규산염 광물들이 함께 침전하였을 것이다. 그러나 방해석의 침전과정이 이루어지는 과정 동안에, 온천공으로부터 채수되는 탄산수의 양이 수요에 따라 매우 불규칙해서 탄산수의 수요가 많은 경우 탄산수가 지속적으로 과잉 채수되면 주변 천층지하수가 탄산수에 혼합되어 Fe, Mn 등의 농도를 상대적으로 낮추게 되어 산화물형태로 침전되기가 어려워져서 거의 순수한 방해석만이 침전하게 된다. 결과적으로 거의 순수한 방해석 층에 검붉은 층이 불규칙하게 반복되고 있는 중원지역 탄산염침전물은 침전작용이 일어나는 대부분의 기간 동안 지속적으로 주변 전층지하수의 유입이 일어났음을 지시하고 있다. 또한 Fe, Mn 등의 함량이 높은 탄산수로부터의 침전은 매우 짧은 기간동안 단속적으로 일어났음을 지시한다.

  • PDF

Serpentine Pretreatment Using Electrolyzed Reduced Water for Mineral Carbonation Materials (전해환원수를 이용한 탄산염 광물화 원료용 사문석의 전처리)

  • Choi, Weon-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.447-454
    • /
    • 2009
  • Electrolyzed reduced water was known as an alkaline solvent than piped water, natural water and mineral water etc. By means of reduction property, electrolyzed reduced water could dissolve a solute than other kinds of water without chemicals. In this study, serpentine dissolution in electrolyzed reduced water was investigated as a novel pre-treatment of serpentine which was a minerals for carbon dioxide sequestration. The elements (Ca, Si, Mg etc.) of serpentine were dissolved rapidly at early in the dissolvation then after some minutes the solubilities of serpentine elements showed stable state without abrupt changes. In spite of serpentine elements dissolution, chemical bondings and crystallographic structure of serpentine were not changed. It was explained that the dissolution mechanism of serpentine occurred from surface in electrolyzed reduced water and bulk structure sustained without collapse.

Mineral Carbonation of High Carbon Dioxide Composition Gases Using Wollastonite-distilled Water Suspension (규회석-증류수 현탁액을 이용한 고농도 CO2 가스의 탄산염 광물화)

  • Song, Haejung;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.342-351
    • /
    • 2014
  • The present paper investigates the performance of direct wet mineral carbonation technology to fix carbon dioxide ($CO_2$) from relatively high $CO_2$ concentration feeding gas using wollastonite ($CaSiO_3$)-water (and 0.46 M acetic acid) suspension solution. To minimize the energy consumed on the process, the carbonation in this work is carried out at atmospheric pressure and slightly higher room temperature. As a result, carbon fixation is confirmed on the surface of $CaSiO_3$ after carbonation with wollastonite-water suspension solution and its amount is increased according to the $CO_2$ composition in the feeding gas. The leaching and carbonation ratio of wollastonite-water suspension system obtained from the carbonation with 50% of $CO_2$ composition feeding gas is 13.2% and 10.4%, respectively. On the other hand, the performance of wollastonite-acetic acid in the same condition is 63% for leaching and 1.39% for carbonation.

A Study on Mineral Carbonation of Chlorine Bypass Dust with and without Water Washing (수세 유무에 따른 염소 바이패스 분진의 광물 탄산화 연구)

  • Hye-Jin Yu;Woo Sung Yum
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.18-24
    • /
    • 2023
  • This study undertook initial investigations into the carbonation of chlorine bypass dust, aiming to apply it as a raw material for cement and as an admixture for concrete. Various experimental methods, including XRD(X-ray diffraction), XRF(X-ray fluorescence), and particle size distribution analyses, were employed to verify the physical and chemical properties of chlorine bypass dust, with and without water washing. The mineral carbonation extent of chlorine bypass dust was examined by considering the dust type, stirring temperature, and experiment duration. Notably, a higher degree of mineral carbonation was observed in water-washed bypass dust than its non-water-washed counterpart, indicating an elevated calcium content in the former. Furthermore, an augmented stirring temperature positively impacted the initial stages of mineral carbonation. However, divergent outcomes were observed over time, contingent upon the specific characteristics of dust types under consideration.

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

Component and Phase Analysis of Calcium Silicate Cement Clinker by Raw Materials Mix Design (원료 배합에 따른 칼슘 실리케이트 시멘트 클링커의 성분 및 상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • In the cement industry, in order to reduce CO2 emissions, technology for raw materials substitution and conversion, technology for improving process efficiency of utilizing low-carbon new heat sources, and technology for collecting and recycling process-generated CO2 are being developed. In this study, we conducted a basic experiment to contribute to the development of CSC that can store CO2 as carbonate minerals among process-generated CO2 capture and recycling technologies. Three types of CSC clinker with different SiO2/(CaO+SiO2) molar ratios were prepared with the clinker raw material formulation, and the characteristics of the clinker were analyzed. As a result of analysis and observation of CSC clinker, wollastonite and rankinite were formed. In addition, as a result of the carbonation test of the CSC paste, it was confirmed that calcite was produced as a carbonation product. The lower the SiO2/(CaO+SiO2) molar ratio in the CSC clinker chemical composition, the lower the wollastonite production amount, and the higher the rankinite production amount. And the amount of calcite production increased with the progress of carbonation of the CSC paste specimen. It is judged that rankinite is more reactive in mineralizing CO2 than wollastonite.

Characterization of CO2 Biomineralization Microorganisms and Its Mineralization Capability in Solidified Sludge Cover Soil in Landfill (매립지 복토용 슬러지 고화물내 이산화탄소 생광물화 고정균 분석 및 생광물화능 평가)

  • Ahn, Chang-Min;Bae, Young-Shin;Ham, Jong-Heon;Chun, Seung-Kyu;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.598-606
    • /
    • 2013
  • This study was performed to determine whether biomineralization microbes were actively present underneath landfill cover soil producing biocalcification. From this, various types of microbes were observed. Among them, two species were dominantly found; Bacillus megaterium and Alkaliphilus metalliredigens that were known as biominerlization bacteria. With those microbes, $CO_2$ was more highly consumed than without bacteria. In response, the calcium carbonate mineral was produced at 30% (wt) greater than that of the control. At the same time, TG-DTA was successfully used for quantification of $CO_2$ consumed forming calcium carbonate minerals resulting from biocalcification. It was decided that the presence of solidified sewage sludge cake utilized as a cover soil in the landfill could efficiently contribute to possible media adaptably and naturally sequestering $CO_2$ producing from the landfill.

Feasibility of Mineral Carbonation Technology as a $CD_{2}$ Storage Measure Considering Domestic Industrial Environment (국내 산업 여건을 고려한 $CD_{2}$ 저장 방안으로서 광물 탄산화 기술의 타당성)

  • Han, Kun-Woo;Rhee, Chang-Houn;Chun, Hee-Dong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.137-150
    • /
    • 2011
  • $CO_{2}$ mineral carbonation technology, fixation technology of $CO_{2}$ as carbonates, is considered to be an alternative to the $CO_{2}$ geological storage technology, which can perform small- or medium-scale $CO_{2}$ storage. We provide the current R&D status of the mineral carbonation with special emphasis on the technical and economical feasibility of $CO_{2}$ mineral carbonation taken into consideration of the domestic geological and industrial environment. Given that the domestic industry produces relatively large amount of the industrial by-products, it is expected that the technology play a pivotal role on the $CO_{2}$ reduction countermeasure, reaching the potential storage capacity to 12Mt-$CO_{2}$/yr. The economics of the overall process should be improved via the development of advanced technologies on the pretreatment of raw materials, method/solvents for metal extraction, enhanced kinetics of carbonation reactions, heat integration, and the production of highly value-added carbonates.

Petrography of Hongcheon Fe-REE Deposit (홍천 철-희토류광상의 암석기재학)

  • 이한영;박중권;황덕환
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.90-102
    • /
    • 2002
  • The studied Fe-REE ore consists of magnetite, ankerite, siderite, magnesite and strontianite as the major constituent, and monazite, columbite, fergusonite, apatite, aegirine-augite, Na-amphibole, pyrite, chalcopyrite, sphalerite, molybdenite and barite as accessaries. Wall rock of ore deposits is replaced to fenite due to Na-metasomatism and mainly consists of sugary albite and Na-amphibole. Monazite $Ce_{0.49}La_{0.31}Pr_{0.14}Nd_{0.03}Gd_{0.03})PO_4$ is the main mineral for REE deposit and shows myrmekitic intergrowth with strontianite $Ca_{0.02-0.16}Sr_{0.84-0.98}CO_3$ and is corroded by carbonate minerals. Mineral forming sequence can be divided into early and late periods by the development of microfractures. The early period minerals such as magnetite, ankerite, magnesite, monazite and apatite show well developed networks of microfractures due to cataclastic deformation caused by enriched $CO_2$ gas in melts during emplacement. The late minerals of columbite, fergusonite, siderite molybdenite, chalcopyrite and sphalerite formed after the brecciation event and have little micro-fractures. Ankerite, magnesite, monazite, strontianite, barite and pyrite seem to be formed continuously from the ealy to the late period since they show textures both with well developed fractures and also with little fractures. Mineral chemistry, mineral assemblages such as various carbonate minerals, magnetite, REE minerals of monazite and fergusonite, Sr mineral of strontianite, and Nb minerals of columbite, myrmekitic texture of monazite and ankerite, and well developed fenite along ore deposits observed from this studied area strongly indicate that this Hongcheon Fe-REE ore deposits are formed from carbonatitic melt and its rock type is late differentiated Fe-carbonatite or ankerite-carbonatite.

Greenhouse Gas Emission Reduction and Economic Benefit Evaluation of Carbon Mineralization Technology using CFBC Ash (순환유동층 석탄재를 이용한 탄소광물화 기술의 온실가스 배출 저감량 및 경제성 분석)

  • Jung, Euntae;Kim, Jeongyun
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.40-52
    • /
    • 2022
  • This study analyzed the amount of carbon dioxide reduction and economic benefits of detailed processes of CO2 6,000 tons plant facilities with mineral carbonation technology using carbon dioxide and coal materials emitted from domestic circulating fluidized bed combustion power plants. Coal ash reacted with carbon dioxide through carbon mineralization facilities is produced as a complex carbonate and used as a construction material, accompanied by a greenhouse gas reduction. In addition, it is possible to generate profits from the sales of complex carbonates and carbon credits produced in the process. The actual carbon dioxide reduction per ton of complex carbonate production was calculated as 45.8 kgCO2eq, and the annual carbon dioxide reduction was calculated as 805.3 tonCO2, and the benefit-cost ratio (B/C Ratio) is 1.04, the internal rate return (IRR) is 10.65 % and the net present value (NPV) is KRW 24,713,465 won, which is considered economical. Carbon mineralization technology is one of the best solutions to reduce carbon dioxide considering future carbon dioxide reduction and economic potential.