• Title/Summary/Keyword: 타입 II 최적 정규기저

Search Result 5, Processing Time 0.027 seconds

A New Parallel Multiplier for Type II Optimal Normal Basis (타입 II 최적 정규기저를 갖는 유한체의 새로운 병렬곱셈 연산기)

  • Kim Chang-Han;Jang Sang-Woon;Lim Jong-In;Ji Sung-Yeon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2006
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in GF($2^m$). In this paper, we propose a new, simpler, parallel multiplier over GF($2^m$) having a type II optimal normal basis, which performs multiplication over GF($2^m$) in the extension field GF($2^{2m}$). The time and area complexity of the proposed multiplier is same as the best of known type II optimal normal basis parallel multiplier.

A Low Complexity Bit-Parallel Multiplier over Finite Fields with ONBs (최적정규기저를 갖는 유한체위에서의 저 복잡도 비트-병렬 곱셈기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.409-416
    • /
    • 2014
  • In H/W implementation for the finite field, the use of normal basis has several advantages, especially the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. The finite field $GF(2^m)$ with type I optimal normal basis(ONB) has the disadvantage not applicable to some cryptography since m is even. The finite field $GF(2^m)$ with type II ONB, however, such as $GF(2^{233})$ are applicable to ECDSA recommended by NIST. In this paper, we propose a bit-parallel multiplier over $GF(2^m)$ having a type II ONB, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{2m})$. The time and area complexity of the proposed multiplier is the same as or partially better than the best known type II ONB bit-parallel multiplier.

NAP and Optimal Normal Basis of Type II and Efficient Exponentiation in $GF(2^n)$ (NAF와 타입 II 최적정규기저를 이용한 $GF(2^n)$ 상의 효율적인 지수승 연산)

  • Kwon, Soon-Hak;Go, Byeong-Hwan;Koo, Nam-Hun;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.21-27
    • /
    • 2009
  • We present an efficient exponentiation algorithm for a finite field $GF(2^n)$ determined by an optimal normal basis of type II using signed digit representation of the exponents. Our signed digit representation uses a non-adjacent form (NAF) for $GF(2^n)$. It is generally believed that a signed digit representation is hard to use when a normal basis is given because the inversion of a normal element requires quite a computational delay. However our result shows that a special normal basis, called an optimal normal basis (ONB) of type II, has a nice property which admits an effective exponentiation using signed digit representations of the exponents.

Efficient Optimal Normal Basis Multipliers Over Composite Fields (합성체상의 효율적인 최적정규기저 곱셈기)

  • Kwon, Yun Ki;Kwon, Soonhak;Kim, Chang Hoon;Kim, Hiecheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1515-1518
    • /
    • 2009
  • 최적정규기저(Optimal Normal Basis)를 이용한 $GF(2^m)$상의 곱셈은 ECC(Elliptic Curve Cryptosystems: 타원곡선 암호시스템) 및 유한체 산술 연산의 하드웨어 구현에 적합하다는 것은 잘 알려져 있다. 본 논문에서는 최적정규기저의 하드웨어적 장점을 이용하여 합성체(Composit Field)상의 곱셈기를 제안하며, 기존에 제안된 합성체상의 곱셈기와 비교 및 분석한다. 제안된 곱셈기는 최적정규기저 타입 I, II의 대칭성과 가수의 중복성을 이용한 열벡터의 재배열에 따른 XOR 연산의 재사용으로 낮은 하드웨어 복잡도와 작은 지연시간을 가진다.

Type II Optimal Normal Basis Multipliers in GF(2n) (타입 II 최적 정규기저를 갖는 GF(2n)의 곱셈기)

  • Kim, Chang Han;Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.979-984
    • /
    • 2015
  • In this paper, we proposed a Semi-Systolic multiplier of $GF(2^n)$ with Type II optimal Normal Basis. Comparing the complexity of the proposed multiplier with Chiou's multiplier proposed in 2012, it is saved $2n^2+44n+26$ in total transistor numbers and decrease 4 clocks in time delay. This means that, for $GF(2^{333})$ of the field recommended by NIST for ECDSA, the space complexity is 6.4% less and the time complexity of the 2% decrease. In addition, this structure has an advantage as applied to Chiou's method of concurrent error detection and correction in multiplication of $GF(2^n)$.