• Title/Summary/Keyword: 타원 둘레의 길이

Search Result 2, Processing Time 0.014 seconds

A Mediation Model between Logo and DGS (Logo와 DGS의 매개 모델과 오류 사례)

  • Kim, Hwa-Kyung;Song, Min-Ho
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.111-125
    • /
    • 2007
  • In this article, we introduce an example about 'computers and mathematics education' and discuss its educational meaning. First, we survey two microworlds of Logo and DGS, which are two different representation systems for geometric phenomena. And we propose needs of connecting two microworlds with common perspective. And we suggest a mediation model that connects two representations in a microworld. Using this mediation model(Circle model), we construct a circle, a ellipse, and a cardioid with two different representations. It is important that the mediation model makes it possible that we translate descriptions from one representation into the other, and guess perimeters of planar curves. We also discuss roles and mathematical implications of this mediation model by error case in calculating perimeters of ellipses.

  • PDF

Flow Resistance and Modeling Rule of Fishing Nets -2. Flow Resistance of Bag Nets- (그물어구의 유수저항과 모형수칙 -2. 자루형 그물의 유수저항-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.194-201
    • /
    • 1995
  • In order to make clear the resistance of bag nets, the resistance R of bag nets with wall area S designed in pyramid shape was measured in a circulating water tank with control of flow velocity v and the coefficient k in $R=kSv^2$ was investigated. The coefficient k showed no change In the nets designed in regular pyramid shape when their mouths were attached alternately to the circular and square frames, because their shape in water became a circular cone in the circular frame and equal to the cone with the exception of the vicinity of frame in the square one. On the other hand, a net designed in right pyramid shape and then attached to a rectangular frame showed an elliptic cone with the exception of the vicinity of frame in water, but produced no significant difference in value of k in comparison with that making a circular cone in water. In the nets making a circular cone in water, k was higher in nets with larger d/l, ratio of diameter d to length I of bars, and decreased as the ratio S/S_m$ of S to the area $S_m$ of net mouth was increased or as the attack angle 9 of net to the water flow was decreased. But the value of ks15m was almost constant in the region of S/S_m=1-4$ or $\theta=15-90^{\circ}$ and in creased linearly in S/S_m>4 or in $\theta<15^{\circ}$ However, these variation of k could be summarized by the equation obtained in the previous paper. That is, the coefficient $k(kg\;\cdot\;sec^2/m^4)$ of bag nets was expressed as $$k=160R_e\;^{-01}(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for the condition of $R_e<100$ and $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$ for $R_e\geq100$, where $S_n$ is their total area projected to the plane perpendicular to the water flow and $R_e$ the Reynolds' number on which the representative size was taken by the value of $\lambda$ defined as $$\lambda={\frac{\pi d^2}{21\;sin\;2\varphi}$$ where If is the angle between two adjacent bars, d the diameter of bars, and 21 the mesh size. Conclusively, it is clarified that the coefficient k obtained in the previous paper agrees with the experimental results for bag nets.

  • PDF