• Title/Summary/Keyword: 킬레이터

Search Result 11, Processing Time 0.026 seconds

Effect of Enzyme Retting on the Fiber Separation of Kenaf Bast - influence of chelator - (효소 레팅에 의한 케냐프 섬유의 분리 -킬레이터의 영향-)

  • 이혜자;안춘순;김정희;유혜자;한영숙;송경헌
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.7
    • /
    • pp.873-881
    • /
    • 2004
  • This research was aimed to investigate the effect of enzyme and the addition of chelators on rotting of the Kenaf bast. Enzyme rotting was effective only when the chelators were added with the enzyme. EDTA was a more effective chelator than oxalic acid under 1% concentration. There was no difference in the rotting effect under different enzyme concentration levels, and under different treatment time and temperature. Therefore, it was found that enzyme rotting can be carried out with low enzyme concentration(0.125%) at room temperature. Retting time can be shortened when higher enzyme concentration and higher temperature are applied. Cellulose I structure of kenaf fiber did not change after enzyme rotting, and different enzyme concentration did not affect the crytallinity structure. Non-cellulosic matters such as hemicellulose, lignin, and pectin were present in the descending order in the enzyme rotted kenaf fiber, and there were no differences in their amounts due to enzyme concentration levels. There was no difference in the dyeabilities of kenaf fiber rotted with different enzyme concentration levels. Enzyme rotted kenaf fiber showed better cyeability when pectin, lignin, and hemicellulose were removed.

The Study on Bleaching of Kenaf Fibers (Part I) -Effect of Bleaching- (케냐프 섬유의 표백에 대한 연구 (제1보) -표백효과를 중심으로-)

  • Jang Hyunsook;Lee Hyeja;Yoo Hyeja;Han Youngsook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.9_10 s.146
    • /
    • pp.1295-1305
    • /
    • 2005
  • The study was based on a three-stage, non-repetitive factorial experiment in which chemical-rotted kenaf fibers were treated separately with hydrogen peroxide concentrations of $0.5\%,\;1\%\;and\;2\%$, with pH solutions of 7, 9 and 11, and treatment times of 30, 60 and 90 minutes. Under optimal conditions, the study was conducted to determine the bleaching efficiency by the addition of chelators, penetrants and surfactants. The bleaching effects on the kenaf fibers were high in high hydrogen peroxide concentration, high in alkali solution pH, low in long treatment time. The optimal level of hydrogen peroxide on bleaching effects were at $2\%$ hydrogen peroxide concentration, with pH of 11 and treatment time of 60 minutes. Under the conditions of $2\%$ hydrogen peroxide concentration, pH 11 and treatment time of 60 minutes, the addition of chelator: Sodim Pyrophosphate(SP), Citric Acid(CA) made the bleaching effects of the kenaf fibers high.

The Study on Bleaching of Kenaf Fibers (Part II) -Effect of Strength and Elongation- (케냐프 섬유의 표백에 대한 연구 (제2보) -강도와 신도의 변화를 중심으로-)

  • Lee, Hye-Ja;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.11
    • /
    • pp.1454-1464
    • /
    • 2005
  • The study was based on a three-stage, non-repetitive factorial experiment in which chemical-rotted kenaf fibers were treated separately with hydrogen peroxide concentrations of $0.5\%,\;1\%\;and\;2\%$, with pH solutions of 7, 9 and 11, and treatment times of 30, 60 and 90 minutes. Under optimal conditions, the study was conducted to determine the strength and elongation of kenaf fibers by the addition of chelators, penetrants and surfactants. The hydrogen peroxide concentration, solution pH and treatment time directly affected the strength of kenaf fibers. The hydrogen peroxide concentration, solution pH affected the elongation of kenaf fibers. It was found, however, that the interaction between pH and treatment time, concentration and treatment time, concentration and treatment time and pH affected the strength of kenaf fibers. Also, It was found that the interaction between pH and concentration, concentration and treatment time, concentration and treatment time and pH affected the elongation of kenaf fibers. Under the hydrogen peroxide conditions of $2\%$ concentration, pH 11 and a treatment time of 60 minutes, there were no effects on the strength and elongation of kenaf fibers with the addition of chelator SP, CA.

Reactivity Evaluation on Copper Etching Using Organic Chelators (유기 킬레이터들을 이용한 구리 식각에 대한 반응성 평가)

  • Kim, Chul Hee;Lim, Eun Taek;Park, Chan Ho;Park, Sung Yong;Lee, Ji Soo;Chung, Chee Won;Kim, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.569-575
    • /
    • 2021
  • The reactivity evaluation of copper is performed using ethylenediamine, aminoethanol, and piperidine to apply organic chelators to copper etching. It is revealed that piperidine, which is a ring-type chelator, has the lowest reactivity on copper and copper oxide and ethylenediamine, which is a chain-type chelator, has the highest reactivity via inductively coupled plasma-mass spectroscopy (ICP-MS). Furthermore, it is confirmed that the stable complex of copper-ethylenediamine can be formed during the reaction between copper and ethylenediamine using nuclear magnetic resonance (NMR) and radio-thin layer chromatography. As a final evaluation, the copper reactivity is evaluated by wet etching using each solution. Scanning electron micrographs reveal that the degree of copper reaction in ethylenediamine is stronger than that in any other chelator. This result is in good agreement with the evaluation results obtained by ICP-MS and NMR. It is concluded that ethylenediamine is a prospective etch gas for the dry etching of the copper.

DNA Breakage by Salvianolic acid B in the Presence of Cu (II) (구리이온(II)이 존재할 때 Salvianolic acid B에 의한 DNA 절단)

  • Lee, Pyeongjae;Moon, Cheol;Choi, Yoon Seon;Son, Hyun Kyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.205-210
    • /
    • 2018
  • Salvianolic acid B, which is a compound in the Salvia miltiorrhiza, has diverse biological activities, In particular, the antioxidative effects were reported to be involved in the protection of hepatocytes, neurons, and various cell types. On the other hand, some phenolic compounds, such as ferulic acid, which is regarded as an antioxidant, plays a pro-oxidative role in the specific transitional metal environment, which could explain the anticancer effect. This study examined the pro-oxidative effects of salvianolic acid B in the presence of $Cu^{2+}$. Treatment with both salvianolic acid B and $Cu^{2+}$ induced the transition of supercoiled DNA to the open circular or linear form but not in the sole salvianolic acid B or $Cu^{2+}$ treatments. Salvianolic acid B reduced the $Cu^{2+}$ to $Cu^+$ using neocuproine, a $Cu^+$ specific chelator. In addition, catalase, an enzyme that breaks down the $H_2O_2$ to water and molecular oxygen, inhibited the DNA breakage. $H_2O_2$, a reactive oxygen species, has detrimental effects on biological molecules, particularly DNA. Overall, the reduction of $Cu^{2+}$ by salvianolic acid B could lead to the production of $H_2O_2$ followed by DNA breakage. These results suggest that the pro-oxidative effects could be the one of the anti-cancer mechanisms of salvianolic acid B, which remains to be explained.

Bone Changes in Femoral Bone of Mice Using Calcein Labeling (Mice에서 Calcein 표지를 이용한 골 변화 관찰)

  • Shim, Moon-Jung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.114-117
    • /
    • 2016
  • In vivo labeling of bone with fluorochromes is a widely used method for assessment of bone formation and remodeling processes. In particular, calcein is used as a marker for identification of bone growth, which is indicated by a green color. Calcein green is a calcium chelator that adheres to regions of mineralizing bone thereby allowing localization of new bone. Bone formation and remodeling in vivo can be assessed by calcium-binding calcein labeling. In this study, changes in the femoral bone of a normal mouse model at both 4 and 8 weeks were evaluated using calcein labeling. Intense deposition of calcium in the bone was observed after application for 8 weeks. A mouse model is suitable for application in in vivo experiments using genetically modified mice, such as knock-out mice, however data regarding femoral cross sectional bone in young mice are limited. The current study confirmed calcein as a useful marker for identification of bone growth, which was indicated by a green color on photomicrographs. This methodological process may provide basic information for interpreting bone formation and regeneration to pharmacologic or genetic manipulation in mice.

Copper Regulates Apelin Expression in L6 Skeletal Muscle Cells (골격근세포에서 구리에 의한 마이오카인 apelin의 발현)

  • Kisang Kwon;Jin Sol Park;Young Eun Choi;Eun-Ryeong Lee;Jae Eun Yoo;Hyewon Park;O-Yu Kwon
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.724-729
    • /
    • 2023
  • In this experiment, we aimed to investigate the role of copper in regulating the biosynthesis of a myokine called apelin in mammalian skeletal muscle cells. Our approach involved culturing skeletal muscle cells and subjecting them to treatments with copper sulfate or a copper chelator known as bathocuproinedisulfonic acid (BCS). We employed standard techniques, such as reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, to assess the synthesis of apelin at different stages, including transcription, translation, and post-translational modifications. Our findings demonstrated that copper had an inhibitory effect on apelin biosynthesis at all three stages: transcription, translation, and post-translation. However, when we treated the cells with BCS, the biosynthesis of apelin was restored to its original state. This finding suggests that copper is required for the synthesis of apelin in mammalian skeletal muscle cells. This study represents the first documented evidence of the inorganic copper-dependent regulation of apelin biosynthesis, shedding light on potential strategies for the prevention and treatment of sarcopenia induced by copper imbalances.

Production and Evaluation of Immunoreactivity of Poly Lysine-Tagged Single Chain Fragment Variable (ScFv) Lym-1 Antibody for Direct Conjugation to Fluorescence Dye (형광 물질 직접 표지를 위한 Poly Lysine 도입 Lym-1 단일사슬 항체의 제조 및 면역반응성 평가)

  • Jung, Jae-Ho;Choi, Tae-Hyun;Woo, Kwang-Sun;Chung, Wee-Sup;Kang, Joo-Hyun;Jeong, Su-Young;Choi, Chang-Woon;Lim, Sang-Moo;Cheon, Gi-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.487-494
    • /
    • 2009
  • Purpose: Small size of recombinant scFv antibody has many advantages such as rapid blood clearances and improved targeting antibodies to tumor region. On the other hand owing to small size, number of amino group is insufficient in conjugation with chelator and fluorescence labeling. This study is to introduce poly lysine tag to the C-terminal end of scFv lym-1 sequence for fluorescence chelator conjugation. Materials and Methods: Poly lysine scFv lym-1 gene, cloned into pET-22b (+) vector, was expressed in E. coli BL21 (DE3) strain. Antibody purification was performed with Ni-NTA column and then size exclusion column chromatography. Expression and purification levels of poly lysine tagged scFv lym-1 antibody were confirmed by western blot analysis. I-124, I-125, I-131 and Tc-99m were used for radiolabeling of purified poly lysine scFv lym-1. Flow cytometry analysis of FIT( conjugated poly lysine scFv lym-1 was performed for confirmation of immunoreactivity of human Burkitt's lymphoma cells. Results: Poly lysine scFv lym-1 antibody was purified through two steps and identified as molecular weight of 48 KDa. Radiolabeling yields of I-124, I-125, I-131 and Tc-99m into poly lysine scFv lym-1 were >99%, >99%, >95% and >99%, respectively. Flow cytometry analysis of poly lysine scFv and scFv lym-1 was showed similar immunoreactivity to human Burkitt's lymphoma cells. Conclusion: Poly lysine tag was useful for the sufficient number of amino groups to scFv lym-1 antibody for chelator conjugation with minimizing loss of immunoreactivity.

Mechanisms of Tributyltin-induced Leydig Cell Apoptosis (유기주석화합물이 웅성생식세포주에 미치는 영향)

  • Lee, Kyung-Jin;Kim, Deok-Song;Ra, Myung-Suk;Wui, Seong-Uk;Im, Wook-Bin;Park, Hueng-Sik;Lee, Jong-Bin
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 2003
  • Tributyltin (TBT) used world-wide in antifouling paints for ships is a widespread environmental pollutant and cause reproductive organs atrophy in rodents. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reproductive organs by TBT. In this study, we investigated that the mechanisms underlying DNA fragmentation induced by TBT in the rat leyding cell line, R2C. Effects of TBT on intracellular Ca$\^$2+/ level and reactive oxygen species (ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular Ca$\^$2+/ level in a time-dependent manner. The rise in intracellular Ca$\^$2+/ level was followed by a time-dependent generation of reactive oxygen species (ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular Ca$\^$2+/ chelator, indicating the important role of Ca$\^$2+/ in R2C during these early intracellular events. In addition, Z-DEVD FMK, a caspase-3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular Ca$\^$2+/ level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases,and finally results in DNA fragmentation.