• Title/Summary/Keyword: 키워드 분석

Search Result 1,723, Processing Time 0.026 seconds

A Study on the African Image Expressed in 2005 S/S Collections (2005 S/S 컬렉션에 나타난 아프리카 이미지 연구)

  • Lee, Keum-Hee;Kim, Wan-Joo;Kim, So-Ra
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.911-922
    • /
    • 2007
  • In this study, for the purpose of correct viewing on the image of Africa and understanding of modem fashion, African image and art, the general characteristics of African costume, the background of fashion subjecting African image, and the trend according to ages were examined based on theoretical background. Then the researcher drew African image by analyzing the works in four 2005 S/S major fashion collections to designers and design factors. The ten voted designers' and brands' works in 2005 S/S collections had four concepts of African image; 'Wild Erotic', 'Abstract Primitive', 'Natural Elegant' and 'Sporty Romantic'. The viewpoint of modem fashion on African image from the aspect of design, designer and fashion trend can be examined as below. First, African costume, which was religious and ceremonial, appeared to emphasize its esthetic side with decorative details in modem fashion design and designers competed to choose a method to harmonize tradition and modem style and by adopting these from occult to decorative meaning, Second, fashion designers presented city unpolished beauty of modem women to a special style and made african image to be recognized as a code of fashion culture by integrating it with modem people's mind to go back to the past and admiration for the purity of nature. Third, thanks to the instinctive vitality hidden in the primitive life, inspiration for creative design that is found in the esthetic mind of the Indians, foreign taste emphasizing ethnic trend, and admiration to naturalism due to the increase of concern over ecology, 'African image' led the beginning of 21C trend by being settled as a in fashion trend.

Research on Text Classification of Research Reports using Korea National Science and Technology Standards Classification Codes (국가 과학기술 표준분류 체계 기반 연구보고서 문서의 자동 분류 연구)

  • Choi, Jong-Yun;Hahn, Hyuk;Jung, Yuchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.169-177
    • /
    • 2020
  • In South Korea, the results of R&D in science and technology are submitted to the National Science and Technology Information Service (NTIS) in reports that have Korea national science and technology standard classification codes (K-NSCC). However, considering there are more than 2000 sub-categories, it is non-trivial to choose correct classification codes without a clear understanding of the K-NSCC. In addition, there are few cases of automatic document classification research based on the K-NSCC, and there are no training data in the public domain. To the best of our knowledge, this study is the first attempt to build a highly performing K-NSCC classification system based on NTIS report meta-information from the last five years (2013-2017). To this end, about 210 mid-level categories were selected, and we conducted preprocessing considering the characteristics of research report metadata. More specifically, we propose a convolutional neural network (CNN) technique using only task names and keywords, which are the most influential fields. The proposed model is compared with several machine learning methods (e.g., the linear support vector classifier, CNN, gated recurrent unit, etc.) that show good performance in text classification, and that have a performance advantage of 1% to 7% based on a top-three F1 score.

KMSCR: A system for managing knowledge assets of an IT consulting firm (IT 컨설팅 회사의 지적 자산 관리를 위한 지식관리시스템)

  • 김수연;황현석;서의호
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.233-239
    • /
    • 2001
  • 최근 대부분의 회사들은 업무를 수행하는데 필요한 지식과 노하우를 공유하고 재사용하기 위하여 지적 자산 관리의 중요성을 인식하고 있다. 특히 고도로 지식 집약적인 업종이라 할 수 있는 IT컨설팅 회사에서는 지적 자산의 관리가 다른 어떤 회사에서보다 큰 중요성을 가지게 된다. 컨설팅 회사에 있어서 검증이 완료된 지적 자산의 공유 및 지능적이면서도 신속한 검색은 컨설팅 서비스의 품질과 고객 만족에 직결되는 중요한 요소이다. 따라서 대부분의 컨설팅 회사들은 자사의 지식 자산을 관리하기 위하여 많은 노력을 기울이고 있다. 본 논문의 목적은 IT 컨설팅 회사예서 관리되는 다양한 형태의 지적 자산들을 중앙 관리하여 설친 고객 사이트에 흩어져 프로젝트를 수행하는 컨설턴트들이 공유할 수 있도록 함으로써 컨설팅 서비스의 생산성과 품질들 높이고자 하는데 있다 이를 위하여 건설팅 회사에서 관리되는 모든 지적 자산의 재고를 조사하여 모델링하고 이를 쉽게 저장하고 검색할 수 있는 시스템 아키텍처를 제안한다. 제안된 아키텍처를 NT 기반에서 Index server를 이용하여 시스템으로 구현하였다 (KMSCR: A Knowledge Management System for managing Consulting Resources). KMSCR에서는 컨설턴트가 찾고자 하는 검색어를 입력하면 다양한 포맷의 (.doc, .ppt, xls, .rtf, .txt, .html 등과 같은) 결과물을 관련성이 높은 순서대로 출력해 줌으로써 컨설팅 리소스를 효과적으로 재사용할 수 있도록 도와 준다. 또한 검색 시에는 미리 등록된 키워드 뿐 아니라 본문 내의 텍스트 검색까지 가능하게 함으로써 컨설팅 리소스에 대한 보다 효과적이고 효율적인 검색을 가능하게 한다.간을 성능 평가 인자로 하여 수행하였다. 논문에서 제한된 방법을 적용한 개선된 RICH-DP을 모의 실험을 통하여 분석한 결과 기존의 제한된 RICH-DP는 실시간 서비스에 대한 처리율이 낮아지며 서비스 시간이 보장되지 못했다. 따라서 실시간 서비스에 대한 새로운 제안된 기법을 제안하고 성능 평가한 결과 기존의 RICH-DP보다 성능이 향상됨을 확인 할 수 있었다.(actual world)에서 가상 관성 세계(possible inertia would)로 변화시켜서, 완수동사의 종결점(ending point)을 현실세계에서 가상의 미래 세계로 움직이는 역할을 한다. 결과적으로, IMP는 완수동사의 닫힌 완료 관점을 현실세계에서는 열린 미완료 관점으로 변환시키되, 가상 관성 세계에서는 그대로 닫힌 관점으로 유지 시키는 효과를 가진다. 한국어와 영어의 관점 변환 구문의 차이는 각 언어의 지속부사구의 어휘 목록의 전제(presupposition)의 차이로 설명된다. 본 논문은 영어의 지속부사구는 논항의 하위간격This paper will describe the application based on this approach developed by the authors in the FLEX EXPRIT IV n$^{\circ}$EP29158 in the Work-package "Knowledge Extraction & Data mining"where the information captured from digital newspapers is extracted and reused in tourist information context.terpolation performance of CNN was relatively

  • PDF

Fourth industrial revolution of Women's University Students and change of intelligent information technology

  • Hwang, Eui-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.235-243
    • /
    • 2019
  • Universities are opening related majors and subjects to nurture the problem-solving fusion that businesses want. The time has come when rapid technological. On this thesis, we analyzed three years (2017-2019) of survey result of Women University students in order to figuring out and dealing with the change in 4th industrial revolution and intellectual information technology. It turns out that 1) there was an increase of interest in 4th industrial revolution from 59% in 2017 to 80% in 2019, 2) IoT, ICT, Artificial Intelligence, and Education Research System became top priority in technical strategy, 3)the prime keyword is AI, robot, job, 4)the expectation on increasing of the opportunity and the number of jobs in science technology field was 50%, 5)the importance of universities and companies was 50%, 80% each, 6) the information needed for science technology were educational discipline, change in future science, prospective future information in order, and 7)the most needed education were education on creativity, coding, cross-subject, engineering in order. In the era of the fourth industrial revolution, it is essential to expand the SW manpower base in various fields. University education, which should provide connectivity for super-fusion, should provide curriculum optimized for industrial demands such as, fusion and connected education, creative thinking, self-directed problem solving and etc.

Analysis of Automotive HMI Characteristics through On-road Driving Research (실차 주행 연구를 통한 차량별 HMI 특성 분석)

  • Oh, Kwangmyung
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.49-60
    • /
    • 2019
  • With the appearance of self-driving cars and electric cars, the automobile industry is rapidly changing. In the midst of these changes, HMI studies are becoming more important as to how the driver obtains safety and convenience with controlling the vehicle. This study sought to understand how automobile manufacturers understand the driving situation, and how they define and limit driver interaction. For this, prior studies about HMI were reviewed and 15 participants performed an on-road study to drive vehicles from five manufacturers with using their interfaces. The results of the study confirmed that buttons and switches that are easily controlled by the user while driving were different from manufacturer to manufacturer. And there are some buttons that are more intensively controlled and others that are difficult to control while driving. It was able to derive 'selection and concentration' from Audi's vehicle, 'optimization of the driving ' from BMW's, 'simple and minimize' from Benz's vehicle, 'remove the manual distraction' from the vehicle of Lexus, and 'visual stability' from KIA's vehicle as the distinctive keywords for the HMI. This shows that each manufacturer has a different definition and interpretation of the driver's driving control area. This study has a distinct value in that it has identified the characteristics of vehicle-specific HMI in actual driving conditions, which is not apparent in appearance. It is expected that this research approach can be useful to see differences in interaction through actual driving despite changes in driving environment such as vehicle platooning and self-driving technology.

Automatic Classification and Vocabulary Analysis of Political Bias in News Articles by Using Subword Tokenization (부분 단어 토큰화 기법을 이용한 뉴스 기사 정치적 편향성 자동 분류 및 어휘 분석)

  • Cho, Dan Bi;Lee, Hyun Young;Jung, Won Sup;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In the political field of news articles, there are polarized and biased characteristics such as conservative and liberal, which is called political bias. We constructed keyword-based dataset to classify bias of news articles. Most embedding researches represent a sentence with sequence of morphemes. In our work, we expect that the number of unknown tokens will be reduced if the sentences are constituted by subwords that are segmented by the language model. We propose a document embedding model with subword tokenization and apply this model to SVM and feedforward neural network structure to classify the political bias. As a result of comparing the performance of the document embedding model with morphological analysis, the document embedding model with subwords showed the highest accuracy at 78.22%. It was confirmed that the number of unknown tokens was reduced by subword tokenization. Using the best performance embedding model in our bias classification task, we extract the keywords based on politicians. The bias of keywords was verified by the average similarity with the vector of politicians from each political tendency.

Video-to-Video Generated by Collage Technique (콜라주 기법으로 해석한 비디오 생성)

  • Cho, Hyeongrae;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.39-60
    • /
    • 2021
  • In the field of deep learning, there are many algorithms mainly after GAN in research related to generation, but in terms of generation, there are similarities and differences with art. If the generation in the engineering aspect is mainly to judge the presence or absence of a quantitative indicator or the correct answer and the incorrect answer, the creation in the artistic aspect creates a creation that interprets the world and human life by cross-validating and doubting the correct answer and incorrect answer from various perspectives. In this paper, the video generation ability of deep learning was interpreted from the perspective of collage and compared with the results made by the artist. The characteristic of the experiment is to compare and analyze how much GAN reproduces the result of the creator made with the collage technique and the difference between the creative part, and investigate the satisfaction level by making performance evaluation items for the reproducibility of GAN. In order to experiment on how much the creator's statement and purpose of expression were reproduced, a deep learning algorithm corresponding to the statement keyword was found and its similarity was compared. As a result of the experiment, GAN did not meet much expectations to express the collage technique. Nevertheless, the image association showed higher satisfaction than human ability, which is a positive discovery that GAN can show comparable ability to humans in terms of abstract creation.

CoAID+ : COVID-19 News Cascade Dataset for Social Context Based Fake News Detection (CoAID+ : 소셜 컨텍스트 기반 가짜뉴스 탐지를 위한 COVID-19 뉴스 파급 데이터)

  • Han, Soeun;Kang, Yoonsuk;Ko, Yunyong;Ahn, Jeewon;Kim, Yushim;Oh, Seongsoo;Park, Heejin;Kim, Sang-Wook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • In the current COVID-19 pandemic, fake news and misinformation related to COVID-19 have been causing serious confusion in our society. To accurately detect such fake news, social context-based methods have been widely studied in the literature. They detect fake news based on the social context that indicates how a news article is propagated over social media (e.g., Twitter). Most existing COVID-19 related datasets gathered for fake news detection, however, contain only the news content information, but not its social context information. In this case, the social context-based detection methods cannot be applied, which could be a big obstacle in the fake news detection research. To address this issue, in this work, we collect from Twitter the social context information based on CoAID, which is a COVID-19 news content dataset built for fake news detection, thereby building CoAID+ that includes both the news content information and its social context information. The CoAID+ dataset can be utilized in a variety of methods for social context-based fake news detection, thus would help revitalize the fake news detection research area. Finally, through a comprehensive analysis of the CoAID+ dataset in various perspectives, we present some interesting features capable of differentiating real and fake news.

A study on the negative factors reflected in the will and the factors of well-aging as an alternative (유서에 반영된 부정적 요인과 대안으로서의 웰에이징 요소 연구)

  • Park, Arma;Kwon, On;Ahn, Sang-Yoon;Kim, Kwang-Hwan
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.343-352
    • /
    • 2021
  • The purpose of this article is to study the negative factors reflected in the will and the factors of well aging as an alternative. The survey data was 36 wills published in the media such as newspapers and broadcasting between 2008 and 2020. As a result, various aspects of negative factors were found in youth wills between the ages of 13 and 34. In middle-aged wills between the ages of 35 and 49, female was not found. The negative factors in the socio-economic aspects were remarkable in the wills of adulthood between the ages of 50 and 64. All the writers of wills over the age of 65 were women, and their writings were strongly linked to the spiritual side. In view of these results, the will explored in this study can paradoxically become a proposal for a complete life. The will is a record with the potential of well aging. Sources of the suicide note included daily newspaper, broadcasting and local media. This study analyse the age and gender and the negative factors reflected in the will, by using the physical aspect, the mental aspect, and the socio-economic aspect as the methodology. In addition, the frequency of words and expressions exposed in the will were analyzed and keywords were created in word cloud.

Implementation of CNN-based Classification Training Model for Unstructured Fashion Image Retrieval using Preprocessing with MASK R-CNN (비정형 패션 이미지 검색을 위한 MASK R-CNN 선형처리 기반 CNN 분류 학습모델 구현)

  • Seunga, Cho;Hayoung, Lee;Hyelim, Jang;Kyuri, Kim;Hyeon-Ji, Lee;Bong-Ki, Son;Jaeho, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • In this paper, we propose a detailed component image classification algorithm by fashion item for unstructured data retrieval in the fashion field. Due to the COVID-19 environment, AI-based online shopping malls are increasing recently. However, there is a limit to accurate unstructured data search with existing keyword search and personalized style recommendations based on user surfing behavior. In this study, pre-processing using Mask R-CNN was conducted using images crawled from online shopping sites and then classified components for each fashion item through CNN. We obtain the accuaracy for collar of the shirt's as 93.28%, the pattern of the shirt as 98.10%, the 3 classese fit of the jeans as 91.73%, And, we further obtained one for the 4 classes fit of jeans as 81.59% and the color of the jeans as 93.91%. At the results for the decorated items, we also obtained the accuract of the washing of the jeans as 91.20% and the demage of jeans accuaracy as 92.96%.