• 제목/요약/키워드: 키워드 기반

검색결과 1,111건 처리시간 0.033초

KoNLPy와 KoBERT를 활용한 키워드 및 감정분석 일기 서비스 (Keyword and Emotional Analysis Diary Service Using KoNLPy and KoBERT)

  • 이채원;문미경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.501-502
    • /
    • 2022
  • 최근 작성한 일기를 SNS에 올려 평범한 사람들이 음악, 음식, 사건 등 소소한 일상을 남기고 우울증 투병기를 공유하여 힘을 얻기도 하는 등 누가 시키지 않아도 일기를 작성하고 간직하는 사람들이 증가하고 있다. 이러한 변화로 일기는 하루의 일상을 기록하는 목적을 넘어 어떤 감정을 느꼈는지 알아차리고 자아를 성찰 및 탐구하는 단계로 발전하고 있다. 그러나 스스로 일기의 키워드를 분석하고 감정이 어떠한지 정확하게 아는 것은 어렵다. 이에 따라 본 논문에서는 제시한 문제를 해결하기 위한 방법으로 KoBERT와 KoNLPy를 활용한 키워드 및 감정분석 일기 서비스를 제안하였다. 본 연구의 키워드 및 감정분석 일기 서비스는 사용자가 무의식적으로 표현하는 텍스트 기반의 일기에서 자주 반복되는 키워드와 감정을 제공하여 자신의 감정상태를 쉽게 인지하고 되돌아볼 수 있도록 제작하였다.

  • PDF

RoBERTa-catSeqE: 개체 연결을 이용한 RoBERTa기반 키워드 추출 (RoBERTa-catseqE: Neural keyphrase Extraction with Entity linking using RoBERTa)

  • 이정두;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.486-490
    • /
    • 2020
  • 키워드 구문 추출(Keyphrase extraction)은 각 문서에서 내용과 주제를 포괄하는 핵심 단어 또는 구문을 추출하는 것을 말한다. 이는 뉴스나 논문에서 중요한 정보를 추출하는 데 매우 중요한 역할을 한다. 본 논문에서는 기존 catSeq 모델에 한국어로 학습한 RoBERTa 언어 모델을 적용하고 개체 연결 정보를 활용해 기존 키워드 생성 디코더와 개체 연결된 단어의 키워드 여부 분류 디코더, 즉 듀얼 디코더를 사용하는 모델을 제안하고 직접 구축한 한국어 키워드 추출 데이터에 대한 각 모델의 성능을 비교한다.

  • PDF

키워드 기반 블로그 마케팅을 위한 연관 키워드 추천 시스템 (Associated Keyword Recommendation System for Keyword-based Blog Marketing)

  • 최성자;손민영;김영학
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권5호
    • /
    • pp.246-251
    • /
    • 2016
  • 최근에 SNS와 온라인 매체의 영향력이 커지면서 이를 이용한 마케팅에 대한 관심이 증가하고 있다. 블로그 마케팅은 대형 포털 사이트의 키워드 검색 결과에 따라 상위 노출을 함으로서 비교적 저렴한 비용으로 마케팅의 파급효과와 정보 전달력을 높일 수 있다. 그러나 일부 특정 키워드의 검색 결과의 경우 상위에 노출되려는 경쟁이 과열될 수 있기 때문에, 블로그를 상위에 노출하기 위해서는 장기적이고 적극적인 노력이 필요하다. 따라서 본 연구에서는 블로그의 상위 노출 가능성이 높은 연관 키워드 그룹을 추천하는 새로운 방법을 제안한다. 제안된 방법은 먼저 타겟 키워드의 검색 결과에 포함된 블로그 문서들을 수집하여 단어의 빈번도와 위치정보를 고려하여 연관성이 높은 키워드를 추출하고 필터링한다. 다음에 각 연관 키워드를 타겟 키워드와 비교하여 그들의 연관성, 월간 연관 키워드 검색 량, 검색에 포함된 블로그의 개수, 블로그의 평균 작성 일을 고려하여 상위 노출의 가능성이 높은 연관 키워드 그룹을 추천한다. 본 연구에서 실험을 통하여 제안된 방법이 연관성이 높은 키워드 그룹을 추천함을 보인다.

온톨로지를 이용한 교육자료 관리 기능의 개선 (Enchancing the Education Resource management with ontology)

  • 장병철;차재혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (C)
    • /
    • pp.317-320
    • /
    • 2006
  • 본 연구에서는 한국교육학술정보원의 교육 콘텐츠 관리 시스템인 에듀넷의 키워드 기반 콘텐츠 검색기능을 고도화하기 온톨로지를 활용한 검색 프레임워크를 설계, 구현하였다. 에듀넷의 키워드 기반 검색 시스템에서 사용하는 KEM(Korea Education Metadata)를 owl을 이용하여 온톨로지로 바인딩하였으며, 의미 기반 교육 콘텐츠 검색이 가능하도록 중학교 수학의 일부 영역을 도메인 온톨로지로 구축하였다. 구축한 온톨로지에 실제 에듀넷에서 사용하는 콘텐츠 정보를 이용하여 인스턴스를 생성하였다. 사용자의 쿼리를 입력할 수 있는 인터페이스와 쿼리를 처리하고 추론할 수 있는 추론엔진을 사용하여 본 연구의 검색 시스템을 구축하였다. 실험을 통하여 본 연구에서 구축한 시스템이 키워드 매칭을 통한 검색 보다 사용자에게 의미 있고 유용한 결과를 도출함을 보였다.

  • PDF

OntoFrame: 시맨틱 웹 기반의 추론 서비스 (OntoFrame: Semantic Web-based Inference Service)

  • 이미경;정한민;성원경
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2008년도 추계학술대회
    • /
    • pp.349-352
    • /
    • 2008
  • 본 논문에서는 시맨틱 웹 기반의 학술 정보 분석 서비스 프레임워크인 OntoFrame에 대해 소개하고자 한다. 2005년부터 개발되기 시작한 OntoFrame은 매년 새로운 서비스와 기술로 확장되고 있으며 OntoFrame2008에서는 다중 키워드 기반의 검색 서비스 및 다중 개체 중심적 통합 검색기능을 제공한다. 본 서비스는 키워드의 개체를 판단한 후에 인력, 주제, 인력+주제에 해당하는 서비스 API를 호출하여 추론 서비스 페이지를 구성한다. 이때 시스템에서 자동으로 판단되는 개체의 모호함을 제거하기 위해서 사용자의 의도라고 판단되는 최적의 개체 조합 페이지뿐만 아니라 해당 키워드에서 나타날 수 있는 모든 개체 조합의 후보 페이지들을 제공해주어 시스템의 일방적인 추천 서비스의 단점을 없앴다. 그리고 서비스의 결과로 제공되는 페이지에서 링크를 통한 추가조건 검색도 제공해 주어 사용자의 검색 의도를 정확하게 파악하여 편리한 정보 획득을 도와주는 시스템으로 개발하고 있다. OntoFrame2008은 여러 가지 풍부한 분석 서비스를 제공하여 연구자들이 학술 정보 검색 과정에 많은 도움이 되는 추론 서비스를 제공하고 있다.

  • PDF

Word2Vec 기반 장르 유사성을 활용한 웹툰 검색 (Webtoon Search utilizing Genre Similarity with Word2Vec)

  • 이창민;안제정;강동연;이현아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.503-505
    • /
    • 2019
  • 본 논문에서는 기존 웹툰 장르 검색 시스템의 단점을 보완하기 위해 키워드 기반 유사 장르 검색 시스템을 제안한다. 기존 웹툰의 장르와 키워드를 분석하여 44개의 장르를 설정하고 해당 장르에 적합한 웹툰을 수집한다. 나무위키와 위키피디아 문서로 학습된 Word2Vec모델에 기반하여 계산한 사용자 입력 키워드와 44개의 장르간 유사도로 사용자 입력에 가장 유사한 장르를 찾는다. 유사 장르에 포함되는 웹툰을 결과로 출력하여 사용자가 선호하는 장르의 웹툰을 제시한다. 실험 결과에서는 나무위키에서 '장르'로 검색하여 얻는 작은 크기의 문서 집합에서 Word2Vec을 학습한 모델에서 가장 높은 검색 성능을 보였다.

  • PDF

영화 메타데이터의 증가에 따른 콘텐츠 기반 추천 시스템 성능 향상 (Performance Improvement of a Contents-based Recommendation System by Increasing Movie Metadata)

  • 서진경;최다정;백주련
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.23-26
    • /
    • 2022
  • OTT 서비스의 이용자가 폭발적으로 증가하고 있는 지금, 사용자에게 맞춤형 상품을 추천하는 것은 해당 서비스에서 중요한 사안이다. 본 논문에서는 콘텐츠 기반 추천 시스템의 모델을 제안하고, 영화 데이터를 추가 해가며 예측력을 높일 최종적인 모델을 채택하고자 한다. 이를 위해 GroupLens와 Kaggle에서 영화 데이터를 수집하고 총 1111개의 영화, 943명의 사용자에게서 나온 71026개의 영화 평가 데이터를 이용하였다. 모델 평가 결과, 장르와 키워드만을 이용한 추천 시스템 모델의 RMSE는 1.3076, 단계적으로 데이터를 추가해 최종적으로 장르, 키워드, 배우, 감독, 나라, 제작사를 이용한 추천 시스템 모델의 RMSE는 1.1870으로 모든 데이터를 추가한 모델의 예측력이 더 높았다. 이에 따라 장르, 키워드, 배우, 감독, 나라, 제작사를 이용해 구현한 모델을 최종적인 모델로 채택, 무작위로 추출한 한 명의 사용자에 대한 영화 추천 리스트를 뽑아낸다.

  • PDF

온톨로지 기반의 계층적 개념 인덱싱을 이용한 사용자 관심사 학습 (Learning User Interest using Hierarchical Concept indexing based on Ontology)

  • 박지현;김흥남;조근식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.646-648
    • /
    • 2005
  • 인터넷의 급속한 성장과 더불어 사용자들은 인터넷을 통해 많은 정보를 얻을 수 있게 되었으며 최신 뉴스를 실시간으로 접근할 수 있게 되었다. 이에 따라 방대한 정보 속에 사용자 관심사에 맞는 정보를 효과적으로 검색하기 위한 여러 방법들이 연구되어 왔다. 하지만 기존의 많은 선행 연구들은 단어 빈도 기반의 키워드 벡터 모델을 이용하여 사용자의 관심사를 학습하고 있다. 이러한 키워드 벡터 모델은 사용자의 선호도를 명확하게 기술하지 못하고 키워드를 이용한 특징 벡터 (feature-vector)는 개념들 사이의 관계를 찾기 어려운 한계를 가지고 있다. 이를 개선하기 위해 본 논문에선 계층적 개념 인덱싱(Hierarchical Concept Indexing)을 이용한 온톨로지 형태의 개인화된 사용자 프로파일을 만드는 방법을 제안한다. 생성된 사용자 프로파일에 개념 간의 유사도와 개념에 대한 사용자의 관심도를 고려하여 보다 개인의 선호도에 맞는 기사를 제공한다. 실험에서는 제안된 방법의 성능 평가를 위해서 기존의 키워드 벡터 모델의 학습 방법인 WebMate 시스템과 비교 분석하였다. 그 결과 제안하는 방법이 키워드 벡터를 이용한 학습 방법보다 향상된 성능을 보였다.

  • PDF

키워드 가중치 기반 문단 추출 알고리즘 (Keyword Weight based Paragraph Extraction Algorithm)

  • 이종원;주상웅;이현주;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.504-505
    • /
    • 2017
  • 기존의 형태소 분석기는 문서 내에 사용된 단어들을 분류한다. 이를 기반으로 문장과 문단을 추출하는 시스템이 개발되고 있으나 해당 문서를 압축하여 주요 문단을 추출하는 시스템은 매우 미흡한 실정이다. 본 논문에서 제안하는 알고리즘은 문서 내에 사용된 키워드들의 가중치를 계산하고 키워드를 포함한 문단들을 추출한다. 이는 해당 문서를 모두 읽지 않고 키워드가 포함된 문단들을 읽음으로써 문서를 이해하는 시간을 줄일 수 있다. 또한 검색에 사용된 키워드의 개수에 따라 추출되는 문단의 수가 다름으로 사용자는 기존 시스템에 비해 다양한 패턴의 검색이 가능하다.

  • PDF

빅 데이터 기반 만성질환 관리 시스템 (A web-based Obesity Management system using Body variations)

  • 강희범;이종원;김경환;김창수;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.787-789
    • /
    • 2016
  • 오늘날 만성질환자에게 데이터를 제공해주고 관리하는 시스템의 필요성이 대두되고 있다. 그러나 대부분의 질병관리 시스템의 경우 사용자에게 광범위한 데이터를 제공하거나, 중요한 키워드 및 데이터를 제공해주지 않는 문제점이 존재하였다. 본 논문에서는 질병에 대한 데이터에 대해 R프로그래밍을 통해 분석하여 해당 질병에 가장 관련이 높은 키워드를 사용자에게 추천해준다. 이를 통해 사용자가 자신의 질병을 관리할 시 중요한 키워드들을 효율적으로 관리할 수 있는 빅 데이터 기반 만성질환 관리 시스템을 연구하였다. 제안하는 시스템을 활용하여 사용자는 불필요한 데이터나 키워드를 제외하고 필요로 하는 데이터와 키워드를 볼 수 있을 것으로 사료된다.

  • PDF